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Abstract

We consider the foundations of attention mechanisms in deep neural network archi-1

tectures and present three main results. First, we provide a systematic taxonomy of2

all possible attention mechanisms within, or as extensions of, the McCulloch and3

Pitt standard model into 18 classes depending on the origin type of the attention4

signal, the target type of the attention signal, and whether the interaction type is5

additive or multiplicative. Second, using this taxonomy, we identify three key atten-6

tion mechanisms: output gating, synaptic gating, and multiplexing. Output gating7

and synaptic gating are extensions of the standard model and all current attention-8

based architectures, including transformers, use either output gating or synaptic9

gating, or a combination of both. Third, we develop a theory of attention capacity10

and derive mathematical results about the capacity of basic attention networks.11

For example, the output gating of a linear threshold gate of n variables by another12

linear threshold gate of the same n variables has capacity 2n2(1 + o(1)). Perhaps13

surprisingly, multiplexing attention is used in the proofs of these results. Synaptic14

and output gating provide computationally efficient extensions of the standard15

model allowing for sparse quadratic activation functions. They can also be viewed16

as primitives enabling the concise collapsing of multiple layers of processing in17

the standard model.18

1 Introduction19

The motivation for studying attention in deep learning models, or artificial neural networks, is two-20

fold. The first motivation is to avoid getting bogged down by the complexity of biological systems.21

There is of course a vast literature on the neurobiology and psychophysics of attention (e.g. [13, 2, 19])22

pointing to a variety of different phenomena and attention systems, leading some to conclude at the23

end of a review: “The word“attention” is an inadequate, singular term for a multitude of inter-related24

processes. We use a host of adjectives to describe attention—-for example, we say that attention can25

be divided, oriented, sustained, or focused, and many of these descriptions likely reflect underlying,26

dissociable neural processes. Complicating matters, attentional resources can be allocated to either27

external stimuli, or to internal stimuli such as thoughts and memories. Furthermore, we often confuse28

the regulation of attention (a covert behavior) with the regulation of movement (an overt behavior)29

when discussing an “attentional disorder”” [2]. In spite of this complexity and diversity of processes,30

we believe that at the most fundamental level attention mechanisms are built out of a small number31

of fundamental operations, which occur on time scales that are fast compared to the time scales32

for learning and long-term synaptic modifications. In particular, in order to exclude other stimuli,33

which is the hallmark of attention, neuronal machinery must exist that is capable of dynamically34

suppressing the activity of subsets of neurons, or subsets of connections, or both, associated with the35

non-attended information. These fundamental operations may be easier to identify and study using36

artificial neural networks. Thus, one of our goals here is to produce a systematic nomenclature of all37

such possible operations, within the standard deep learning formalism. While this is not the place to38
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discuss the relationship between artificial and biological neural networks, there is a body of evidence39

showing that, at least at some level, the former can provide useful information about the latter (e.g.40

[25, 18, 24]).41

The second obvious motivation is that attention plays an increasingly important role in deep learning42

systems and their numerous applications. Over the past decade, various attention mechanisms such43

as content-based attention [12], speech recognition attention [8], or dot product attention [17], have44

been introduced and successfully deployed in applications. The current pinnacle of attention-based45

architectures is the transformer architecture [23, 22] which has led to state-of-the-art performance46

in NLP and is now widely used. Many of these attention mechanisms were initially developed for47

speech and natural language applications (NLP) (e.g. [3, 9, 20]), but they are now being adapted48

to other problems (e.g. [15, 11]). However, with rare exceptions [10], there is little theory to help49

us better understand the nature and computational capabilities of attention. To begin to address50

some of these issues, we first need to specify the computational framework within which attention51

mechanisms are to be studied. This is what we call the standard model.52

1.1 The Standard Model (SM)53

The Standard Model is the class of all neural networks made of what are generally called McCulloch54

and Pitt neurons. Neural networks in the SM consist of directed weighted graphs of interconnected55

processing units, or neurons. The synaptic strength of the connection from neuron j to neuron i is56

represented by a single real-valued number wij . A neuron i produces an output Oi by first computing57

an activation Si =
∑
j wijOj , i.e the activation corresponds to the dot product of the incoming signal58

with the synaptic weights. In turn, the output of the neuron is produced in the form Oi = fi(Si)59

where fi is the transfer or activation function of neuron i. Typical activation functions include the60

identity function in the case of linear neurons, sigmoidal activation functions such as the logistic61

and tanh activation functions, and piece-wise linear functions ([21]), such as the Heaviside, sign,62

or ReLU functions. An encompassing, and more than sufficient, class of transfer functions for a63

formal definition of the SM is the class of functions that are differentiable everywhere except for a64

finite (and small) set of points. A fundamental, and easy to prove [5], property of the SM is that it65

has universal approximation properties: (1) any Boolean function can be implemented exactly by a66

feed-forward network in the SM; and (2) for any small ε > 0, any continuous function from Rn to67

Rm defined on a compact set C can be approximated within ε everywhere over C by a feed-forward68

network in the SM. Several attention mechanisms described below can be viewed as extensions of69

the standard model, where new operations are added to the SM to obtain a richer model. Extending70

the SM is not a new procedure. For instance, using softmax layers is already an extension of the71

SM since the softmax is not a proper, single-neuron, activation function. Another example is the use72

of polynomial activation functions (e.g. [7]). Due to the universal approximation properties of the73

SM, these extensions are not meant to increase the approximating power of the SM. Rather, their74

value must be established along other dimensions, such as circuit size or learning efficiency. In the75

digital simulations of neural networks, these extensions correspond to new software primitives. In76

physical neural networks, these extensions must come with actual wires and physical mechanisms.77

For instance, a softmax operation is a new software primitive in a neural network software library but78

it requires a new physical mechanism for its physical implementation. It can be replaced by a network79

of depth 3 within the SM with weights set to ±1 (Figure 1a), provided logarithm and exponential80

activation functions are available. Using other activations functions (e.g. ReLU) could require an81

even deeper circuit. Similar observations can be made for the dot product of two vectors (Figure 1b).82

2 A Systematic Taxonomy of Attention Mechanisms83

In the SM, there are three kinds of variable types: S (activations), O (outputs), and w (synaptic84

weights). At the most fundamental level, we can organize attention mechanisms (and more broadly85

new SM interactions) depending on: the type of variable associated with the source of an attention86

signal (3 possibilities), the type of variable associated with the target of an attention signal (387

possibilities), and on the mechanism of the interaction, i.e. on the algebraic operation used to combine88

the attending signal and the attended target. While many algebraic operations can be considered,89

the two most basic ones are addition and multiplication (two possibilities)–resulting in a total of 1890

different possibilities.91

Source: It is reasonable to assume that the source of the attending signal is a variable of type O92

corresponding to the output of one attending neuron, or a group (layer) of attending neurons. While93

other possibilities can be explored, e.g. a synapse directly attending another synapse, they would94
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(a) Softmax. (b) Dot product.

Figure 1: (a) Neural network for computing the softmax function for a vector (u1, u2, u3) in the SM. For clarity,
only the circuit for the first component of the softmax is shown in full. (b) Neural network for computing the dot
product of u = (u1, u2, u3) with v = (v1, v2, v3) in the SM. Across both cases, all the weights are fixed and
equal to either -1 or +1. The transfer functions used are log, exp, and the identity.

require new complex mechanisms in a physical implementation. Furthermore, they do not occur in95

current attention-based deep learning models. The same can be said for the activation being the direct96

source of the attending signal. Even more unlikely would be the case of mixed schemes where the97

attending signal would emanate, for instance, from both neuronal outputs and synapses. In short, the98

reasonable assumption that the attending signals emanate from neuronal outputs allows us to reduce99

the number of possibilities by a factor of three leaving 6 basic possibilities (Table 1.100

Target: For the target of an attention signal, we will study all three possibilities. Thus attention101

signals can target activations (S), outputs (O), or synapses (w). We will call these three forms of102

attention activation attention, output attention, and synaptic attention respectively.103

Mechanism: The most simple operations one can think of for combining the attending signal with104

its attended target are addition and multiplication. Note that both addition and multiplication are105

differentiable operations, and thus can easily be incorporated into the backpropagation learning106

framework. Attention requires excluding all other stimuli and possibly enhancing the attended107

stimulus (here we do not distinguish between external stimulus or internal representation). Intuitively,108

at the fundamental level, these exclusions and enhancements correspond to multiplicative operations109

where, for instance, the signals associated with non-attended stimuli are inhibited–i.e. multiplied by110

zero, and the attended stimuli are enhanced, i.e. mutliplied by a factor greater than one. We will111

reserve the term “gating” for multiplicative interactions. Thus, for instance, multiplicative synaptic112

attention will also be called synaptic gating (Figure 2). All multiplicative interactions, with the113

exceptions of terms of the form wijOj , are not part of the SM and thus correspond to potential114

extensions of the SM. For completeness, we will also consider the case of additive interactions.115

Furthermore, in the case of additive activation attention, for several common activation functions116

such as logistic or ReLU, inhibition (and thus suppression of stimuli) can be achieved additively by117

sending a large negative signal towards the attended neuron. This is also called multiplexing since118

the attending signal is multiplexed with the regular signal. Unlike gating, additive activation attention119

is contained in the SM. Further inspection of Table 1 reveals that among the 6 possibilities some are120

uninteresting (additive output attention) or subsumed by other mechanisms. For instance, gating of a121

neuron’s activation by an attending neuron is equivalent to synaptic gating all its incoming synapses.122

Multiplicities: Finally, in each possible case, one must take into account multiplicity issues both at123

the level of the source and at the level of the target. For instance, in synaptic gating, can the attending124

output of a neuron gate more than one synapse? Can the attending output of several neurons gate the125

same synapse? And so forth. In the most simple cases, we will assume that the multiplicity is one126

both at the source and at the target, but greater multiplicities will also be considered.127

In summary, we are left with six main cases, corresponding to two different mechanisms (+,×)128

and three different target types (S,O,w). These can be further reduced to three most important129

mechanisms, marked in bold in (Table 1): synaptic gating, output gating, and multiplexing.130

3 Attention-Based Architectures and Transformers:All you Need is Gating131

Although the descriptions of attention mechanisms in deep learning often seem complex and some-132

times obscure the underlying neural architecture [12, 8, 17, 3, 9, 20], it can be checked that in all cases133
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Table 1: Organization of attention mechanisms. Assuming that the origin of the attention signal is the output of
one or several neurons, there are 6 classes depending on the target of the signal and the interaction mechanism.
We consider 3 kinds of targets: activation (S), output (O), and synapses (w). We consider 2 kinds of interaction
mechanisms: addition and multiplication. Two of the classes (additive activation attention, or multiplexing, and
additive output attention) are in the SM; the other 4 classes correspond to true extensions of the SM. Further
inspection shows one can focus on three classes only: multiplexing, output gating, and synaptic gating (in bold).

S O w
Addition multiplexing (SM) additive output att.(SM) aditive synaptic att.
Multiplication activation gating output gating synaptic gating

Figure 2: Multiplicative Interactions: Output and Synaptic Gating. Left: In output gating, neuron j gates the
output of neuron i producing a new effective output OiOj . The signal OiOj is broadcasted to all the neurons
downstream of neuron i, including neuron k. Right: In synaptic gating, neuron j gates the synapse between
neuron i and neuron k, producing a new effective synaptic weight equal to wkiOj . In both cases, the signal Oj

can be transmitted to other neurons and other synapses (higher multiplicity). In both cases, neuron k receives
the same signal wkiOiOj . However the effects of output versus synaptic gating on the rest of the network are
different (see text).

these are built out of the output and synaptic gating attention mechanisms described in the previous134

section. For conciseness, here we demonstrate this briefly only for the transformer architectures135

[23, 22] (see also [16] for an MLP alternative to transformers). These architectures typically consist136

of stacks of encoder and decoder modules, with attention mechanisms in each module. The encoder137

and decoder modules are very similar so it is sufficient to examine an encoder module. Let us assume138

that an encoder module has n input vectors. Each vector is first transformed into three vectors, called139

the Query, Key, and Value Vectors, typically via a shared linear transformation which can easily be140

represented in the SM via weight sharing. They Query and Key vectors must have the same dimension141

m. Then a transformer computes all the dot products between the query vectors and the key vectors.142

Dot product operations are not directly available in the SM but can easily implemented by using143

output gating. The dot product of the layer of activities (q1, . . . , qm) with the layer of activities144

(k1, . . . , km) is computed by letting k1 gate q1, k2 gate q2, and so forth. All the gated outputs are145

then connected to a linear unit, with all incoming weights equal to one, in order to produce the dot146

product
∑
qiki. The transformer then applies a softmax to each row of the matrix of n2 dot products.147

Finally, each output vector of the encoder module is computed by taking a convex combination of the148

n value vectors, where the weights of the convex combination are provided by a softmax applied to149

the corresponding row of the matrix of n2 dot products. This can be implemented by using synaptic150

gating, where all the weights between value vectors and output vectors are equal to one and each151

weight is modulated by the corresponding softmax component. The convex combination of the value152

vectors by the corresponding softmax weights determines how much each value vector influences153

each output vector, based on the corresponding similarities between Q vectors and K vectors. This154
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is where the influence of some of the value vectors can be enhanced, while the influence of others155

can be suppressed. Thus in total there are mn2 output gating operations, and n2 synaptic gating156

operations (assuming n output vectors). In multi-head attention, the same mechanisms are replicated157

several times and the same analyses apply. In short, the fundamental building block of a transformer158

consist of a sequence of three macro operations–dot products, softmax, and convex combinations159

that would require a dozen of layers to implement in the SM. These can be implemented much more160

economically by using output gating to compute the dot products and synaptic gating to implement161

the convex combinations.162

4 The Capacity of Attention163

We have seen that attention mechanisms enable important functionalities with minimal depth com-164

pared to the equivalent SM circuits, at the cost of adding attention neurons and mechanisms. Here165

we want to better understand the trade offs between the computations that are enabled and the166

corresponding costs. One key concept for doing so is the concept of neuronal capacity [6].167

4.1 Definition of Capacity:168

Given a class of functions A, we define its cardinal capacity C(A), or just capacity, to be: C(A) =169

log2 |A|, where |A| is the cardinality of A in the finite case. In the continuous case, |A| can be170

defined as a volume, but here we will focus primarily on finite cases. The class Bn of all Boolean171

functions of n variables has capacity C(Bn) = 2n. Here we will consider sub-classes of Bn, in172

particular those implemented by feed-forward networks of linear or polynomial threshold gates,173

with attention mechanisms, and compute the corresponding capacity. Using linear or polynomial174

threshold functions is not particularly restrictive since these are reasonably good approximations175

of linear- or polynomial-activation neurons with steep sigmoidal transfer functions. Furthermore,176

the universal approximation properties of the SM can be established while using only linear (or177

polynomial) threshold functions in the hidden layers.178

4.2 Linear and Polynomial Threshold Functions179

A polynomial threshold functions of degree d has the form sgn p(x), where p(x) is a polynomial of180

degree d using a −/+ output representation. Alternatively, for a 0/1 output representation, we can181

use the form H(p(x) where H is the Heaviside function equal to 0 for x ≤ 0 and to 1 otherwise.182

Units with values in 0/1 are similar to logistic sigmoidal units, and units with values in −1/+ 1 are183

similar to tanh sigmoidal units. We let T (n; d) denote the class of polynomial threshold functions of184

degree d. Thus T (n; 1) denotes the class of linear threshold functions. When the inputs to a threshold185

function are binary, we use the term threshold gate. In the case of polynomial threshold gates, it does186

not matter whether their input is encoded using 0/1 or −/+ (or for that many any two distinct real187

numbers). This is because there is an affine transformation between any two such encodings and the188

affine transformation can be absorbed in the synaptic weights, i.e. the coefficients of p. The same is189

generally true for the encoding of the output, however when attention gating is considered the 0/1190

and −/+ encodings behave differently. For instance, in the case of output gating, the product of191

two 0/1 threshold gates behaves like an AND, whereas the output of two −/+ gates behaves like an192

NXOR.193

Thus to derive more general results, we will consider the case where the gating mechanism is194

implemented by a Boolean function B, which could be an AND, an NXOR, or something else. In195

the most general setting, we let B(z1, . . . , zk) : {−1, 1}k → {−1, 1} be a Boolean formula in k196

variables. We are interested in the class of functions of the form B(f1, ..., fk) : {0, 1}n → {−1, 1}197

where fj ∈ T (n; dj). We denote this class by TB(n; d1, . . . , dk).198

4.3 Why Capacity is Important199

The capacity C(A) is a measure of what the class of functions A can do. As a single number, it is200

of course a very crude representation of the true functional capacity. However in the case of neural201

networks the capacity has a stronger significance. To see this, note first that the cardinal capacity is202

also the number of bits required to specify an element of A. Thus in the case of neural networks, to203

a first order of approximation, the capacity is the number of bits that must be transferred from the204

training data to the synaptic weights during learning for the network to learn to implement a specific205

function in the class A.206
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4.4 Capacity of Single Units: Review207

Before we estimate the capacity of single units with attention mechanisms, we must review the known208

capacity results on single units without attention mechanisms. For a single linear threshold gate of n209

variables, we have [26, 27]:210 (
1− 10

log n

)
n2 ≤ C(T (n; 1)) ≤ n2 (4.1)

This result was refined to the form [14]:211

C(T (n; 1)) = n2 − n log2 n±O(n) (4.2)

Similar results have been obtained for polynomial threshold gates of degree d [4, 7]. In particular, for212

any n and d satisfying 1 ≤ d ≤ nα (where α is fixed and < α < 1) there exists a constant D = D(α)213

such that:214

(1− D

log n
)dn

(
n

≤ d

)
≤ C(T (n; d)) ≈ n

(
n

≤ d

)
(4.3)

where:215

(
n

≤ d

)
=

d∑
k=0

(
n

k

)
(4.4)

For degree d = o(log n), including fixed degree d, Equation 4.3 yields:216

C(T (n; d)) = nd+1

d!
(1− o(1)) (4.5)

We can now move to the problem of estimating the capacity of attention mechanisms, first for single217

unit attention and then for layer-wise attention. Here, for conciseness, we focus on output gating218

alone, but we have derived similar results also for the case of synaptic gating.219

4.5 Capacity of Attention: Single Unit Gating220

Here we consider two linear threshold units with the same n inputs, where the output of one unit221

gates the output of the other units. We have seen that this corresponds to taking the AND or NXOR222

of the two units, depending on whether the outputs are coded using 0/1 or -/+. In short, we want223

to estimate how many Boolean functions can be written as the AND (or NXOR) of two linear (or224

polynomial) threshold gates?225

The capacity of such a circuit has an obvious upperbound, given by the sum of the capacities of its226

components. Thus in the case of linear threshold gates, the capacity is upperbounded by 2n2(1+o(1)).227

The more difficult part is finding the lower bound. It turns out that the lower bound is equal to the228

upper bound so that we have the following theorem.229

Theorem 4.1. The capacity of a single linear threshold gate with n inputs, output-gated by another230

linear threshold gate of the same n inputs, is given by: 2n2(1 + o(1)).231

Note that this theorem shows that output gating is an efficient mechanism in the sense that no capacity232

is lost with respect to the maximum achievable capacity. In other words, the doubling of the number233

of parameters caused by the attending gate leads to a doubling of the capacity, which is the maximum234

achievable. This theorem is a special case of the following, more general theorem, that considers235

the combination of two or more, linear or polynomial, threshold gates combined using an arbitrary236

Boolean operator (not just AND and NXOR).237

Theorem 4.2 (Composition). Let B be an irreducible Boolean operator in k variables.1 Then:238

k∏
j=1

∣∣T (n− k + 1; dj)
∣∣ ≤ ∣∣TB(n; d1, . . . , dk)∣∣ ≤ k∏

j=1

∣∣T (n; dj)∣∣ (4.6)

1Irreducibility means that B can not be expressed as a Boolean operator in fewer than k variables.
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Furthermore, if B is the set of all irreducible Boolean functions of two variables (there are 10 of239

them), we have:240 ∣∣∣⋂
B

TB(n; d0, d1)
∣∣∣ ≥ ∣∣T (n− 1; d0)

∣∣ ∣∣T (n− 1; d1)
∣∣ (4.7)

where the intersection is over the ten irreducible binary Boolean operators.241

By taking logarithms and applying Zuev’s theorem, it is easy to see that Theorem 4.1 is a special242

case of Theorem 4.2, corresponding to k = 2, with AND or NXOR as the Boolean operator, and243

d1 = d2 = 1 for linear threshold gates. The complete proof of Theorem 4.2 is given in the Appendix.244

The key idea for proving this theorem is the use of multiplexing attention, which is used also in the245

proof of Theorem 4.3).246

4.6 Capacity of Attention: Layer Gating247

The previous attention results are obtained using only two neurons, a gating neuron and a gated248

neuron. We now extend the capacity analysis to the case where there is a layer of gating neurons249

output-gating a layer of attended neurons, as shown in Figure 3.250

Figure 3: Left: output gating by a gating layer. For the same n dimensional input vector x,
there are m hidden units computing functions h1(x), . . . , hm(x), and m corresponding gating units
computing functions g1(x), . . . , gm(x). With the gating, the effective output of the hidden units
is given by h1(x)g1(x), . . . , hm(x)gm(x). The final output unit produces an output of the form
f(h1(x)g1(x), . . . , hm(x)gm(x)). In the capacity analysis, we assume that the functions h, g, and f are
linear threshold gates. Right: synaptic gating by a gating layer. In this case, there is a unit computing a function
f(x) with n weights wi, . . . , wn. There are n gating functions g1(x), . . . , gn(x), each one multiplicatively
gating one of the weights w. If f = sign(

∑
i wixi) then fg(x) = sign(

∑
i gi(x)wixi).

Thus we consider an architecture with n inputs, m hidden linear threshold units gated by m corre-251

sponding linear threshold units, and one final linear threshold output gate. All the linear threshold252

gates have −/+ outputs, although the following theorem is unchanged, and the method of proof is253

similar, if the gates have 0/1 outputs. We denote by T (n,m, 1;×) the corresponding set of Boolean254

functions. Note that this is the same architecture for computing the dot product of the gated and the255

gating hidden layer outputs, except that the final unit is non-linear with variable weights, instead of256

being linear with fixed weights equal to one. We will also let T (n, 1;×) denote the set of Boolean257

functions corresponding to one linear threshold gate of n variables output-gated by another linear258

threshold gate of the same variables.259

Theorem 4.3. The capacity C(T (n,m, 1;×)) of the set of Boolean functions corresponding to n260

inputs, m hidden linear threshold gates output-gated by m hidden linear threshold gates of the same261

inputs, followed by one linear threshold gate output satisfies:262

mn2 ≤ C(T (n,m, 1;×)) ≤ 2mn2
(
1 + o(1)

)
(4.8)
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for n→∞, and for any choice of m ∈ [1, 2o(n)]. Furthermore:263

C(T (n,m, 1;×)) = mC(T (n, 1;×))
(
1 + o(1)

)
(4.9)

Thus:264

C(T (n,m, 1;×)) = 2mn2
(
1 + o(1)

)
(4.10)

Proof. Let us denote by f the map between the input layer and the hidden layer with gating, and265

by φ the map from the hidden layer to the output layer. For the upper bound, we first note that the266

total number of possible maps f is bounded by 2mC(T (n,1;×)) ≤ 22mn
2(1+o(1)), since f consists267

of m threshold gates gated by m threshold gates, and thus each gated unit corresponds to at most268

2C(T (n,1;×)) ≤ 22n
2(1+o(1)) possibilities by Zuev’s theorem. Any fixed map f , produces at most 2n269

distinct vectors in the hidden layer. It is known [1] that the number of threshold functions φ of m270

variables defined on at most 2n points is bounded by:271

2

(
2n − 1

≤ m

)
= 2nm(1+o(1)) (4.11)

using the assumption m ≤ 2o(n). Thus, under our assumptions, the total number of functions of the272

form φ ◦ f is bounded by the product of the bounds above which yields immediately:273

C(T (n,m, 1;×)) ≤ mC(T (n, 1;×))
(
1 + o(1)

)
≤ 2mn2

(
1 + o(1)

)
(4.12)

For the lower bound, we can force the gating units to be the identity (i.e. with a constant output equal274

to 1). In this particular case, the gating units can be ignored and we need to count the number of275

Boolean functions that can be implemented in the remaining architecture. A theorem in [6] shows276

that this number is equal to mn2(1 + o(1)).277

To prove the rest of the theorem, we use attention multiplexing. The basic idea is to add a small278

(logarithmic) set of the input units that can be the source of a multiplexing attentional signal that279

can be used to select a particular function in the hidden layer. The same setting of these additional280

attention units will be used to select the corresponding functions in both the gating and gated layers.281

More formally, we decompose n as: n = n−+n+ where n− = dlog2me corresponds to the attention282

units. Likewise, we decompose each input vector x = (x1, . . . , xn) ∈ {−1,+1}n as: x = (x−, x+),283

where:284

x− = (x1, . . . , xn−) ∈ {−1,+1}n
−

and x+ = (xn−+11, . . . , xn) ∈ {−1,+1}n
+

(4.13)

For any gated Boolean linear threshold map f+ from {−1,+1}n+

to {−1,+1}m, we can uniquely285

derive a map f = (f1, . . . , fm) from {−1,+1}n to {−1,+1}m defined by:286

fi(x
−, x+) = [x− = i] AND [f+i (x+)] (4.14)

Here x− = i signifies that the binary vector x− represents the digit i. In other words x− = i is used287

to select the i-th unit in the gated layer as well as in the gating layer, and filter f+ by retaining only288

the value of f+i . This selection procedure can be expressed using a single linear threshold function of289

the input x− for the gated layer, and similarly for the gating layer. We say that f is obtained from f+290

by multiplexing and f is a gated threshold map. It is easy to see that the filtering of two distinct maps291

f+ and g+ results into two distinct maps f and g. Now let us use φ = OR in the top layer–note that292

OR can be expressed as a linear threshold function. Then it is also easy to see that φ◦f 6= φ◦g. Thus293

the total number of Boolean functions that can be implemented in this architecture is lower-bounded294

by the number of all gated Boolean maps f+. This yields:295

C(T (n,m, 1;×)) ≥ mC(T (n+, 1;×))
(
1 + o(1)

)
= 2mn2

(
1 + o(1)

)
(4.15)

using the fact that n+ = n − dlog2me, and dlog2me = o(n) by assumption. Thus:296

C(T (n,m, 1;×)) = mC(T (n, 1;×))
(
1 + o(1)

)
= 2mn2

(
1 + o(1)

)
.297

Remark 4.4. In Theorem 4.3, we see again that both the capacity and the number of parameters298

approximately double at the same time.299
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5 Conclusion300

Within the framework provided by the SM, we have provided a taxonomy of possible attention301

mechanisms. Assuming three variable types and two kinds of interactions (additive or multiplicative)302

leads to 18 mechanisms, which can then be reduced to 6 by assuming that the attention signal emanates303

from the outputs of some neurons, and then down to three by removing redundancies: synaptic gating,304

output gating, and multiplexing. Synaptic gating and output gating are the fundamental building305

blocks of all existing attention-based architectures, including transformers. Finally, using the notion306

of capacity, we have analyzed attentional circuits in a quantitative manner, demonstrating their307

efficiency. Gating attentional mechanisms introduce quadratic activation terms, but in a parsimonious308

way that avoids the cost incurred by the use of full quadratic activations. They can also be viewed as309

coding primitives that effectively collapse multiple architectural layers into one construct.310

Appendix: Detailed Proof of Theorem 4.2311

Here a polynomial threshold function is a function of the form f = sign(p) : {0, 1}n → {−1, 1}312

where p is a polynomial in n real variables of degree at most d. The class of all such functions is313

denoted T (n; d). Let B(z1, . . . , zk) : {−1, 1}k → {−1, 1} be a Boolean function in k variables.314

We are interested in the class of functions of the form B(f1, ..., fk) : {0, 1}n → {−1, 1} where315

fj ∈ T (n; dj). Denote this class by TB(n; d1, . . . , dk). We want to prove that:316

k∏
j=1

∣∣T (n− k + 1; dj)
∣∣ ≤ ∣∣TB(n; d1, . . . , dk)∣∣ ≤ k∏

j=1

∣∣T (n; dj)∣∣ (5.1)

The upper bound is trivial from considering the total number of tuples (f1, ..., fk) with fj ∈ T (n; dj).317

The lower bound is nontrivial except for k = 1 where both bounds become identical. The key to the318

proof is the multiplexing (activation attention) procedure, where k input units are viewed as attention319

units capable of producing a constant mask in the hidden layer, except for the attended function.320

Here for simplicity we use a sparse encoding in the k components, although dense encoding is also321

possible, as in the proof of Theorem 4.3. Dense encoding would lead to a reduction in the number322

of attending units from k to dlog2 ke. As a side note, using more attention units than the minimal323

number required, can be used to reduce the size of the attention weights, or to make the attention324

mechanism less sensitive to each individual attention bit.325

To prove the lower bound in Composition Theorem 4.2, let us restate it equivalently as:326

k∏
j=0

∣∣T (n− k; dj)∣∣ ≤ ∣∣TB(n; d0, . . . , dk)∣∣ ≤ k∏
j=0

∣∣T (n; dj)∣∣ . (5.2)

Irreducibility implies that if we select any input component i, the value of B cannot be determined327

entirely from the value of the remaining components alone. More formally:328

Lemma 5.1. Consider an irreducible Boolean operator B = B(z0, . . . , zk) and an index i ∈329

{0, . . . , k}. There exist signs θ ∈ {−1, 1} and θj ∈ {−1, 1}, j ∈ {0, . . . , k} \ {i}, such that:330

B(z0, . . . , zk) = θzi whenever zj = θj for all j 6= i. (5.3)

Proof. Consider B(z0, . . . , zk) as a function of zi. If this function is constant in the variable zi no331

matter how we fix the other variables, then the value of B(z0, . . . , zk) is entirely determined by332

the values of these other variables, which contradicts irreducibility. Therefore, there exists some333

assignment zj = θj , j 6= i, so that the function B(θ0, θ1, . . . , zi, . . . θk) is not constant in zi. But334

there exists only two non-constant Boolean functions f(x) in one variable: f(x) = x or f(x) = −x,335

and this determines θ.336

The next lemma essentially states that we can fit an affine function of k variables to k + 1 points.337

Lemma 5.2. Let e0 = 0 and e1, . . . , ek denote the canonical basis vectors in Rk. Then, for any338

choice of index j ∈ {0, . . . , k} and signs θi ∈ {−1, 1}, i ∈ {0, . . . , k} \ {j} there exists an affine339

function q : Rk → R such that:340

q(ei) =

{
0, i = j

θi, i 6= j
(5.4)
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for all i ∈ {0, . . . , k}.341

Proof. It is straightforward to check that the function:342

q(z) = θ0 − θ0zj +
∑

i∈{0,...,k}\{j}

(θi − θ0)zi (5.5)

satisfies the required property.343

We can now use the previous lemma to derive a lemma for consistently extending a function of n− k344

variables to a function of n variables. Here k components are used as selector of filter variables, as in345

the proof of Theorem 4.3.346

Lemma 5.3. Consider a function f ∈ T (n− k; d), an index j ∈ {0, . . . , k}, and signs θ ∈ {−1, 1}347

and θi ∈ {−1, 1}, i ∈ {0, . . . , k} \ {j}. There exists a function F ∈ T (n; d) such that:348

F (ei ⊕ x) =

{
θf(x), i = j

θi, i 6= j
(5.6)

for all x ∈ {0, 1}n−k. Here ⊕ denotes the concatenation operator.349

Proof. Express the polynomial threshold function f as:350

f(x) = sign(p(x)) for x ∈ {0, 1}n−k (5.7)

where p is a polynomial in n variables and of degree at most d. Let q be a function that satisfies the351

conclusion of Lemma 5.2. Fix a number M large enough so that M >
∣∣p(x)∣∣ for all x ∈ {0, 1}n−k,352

and define:353

F (z ⊕ x) = sign
(
Mq(z) + θp(x)

)
(5.8)

for all z ∈ Rk and x ∈ Rn−k. By construction, F is a polynomial threshold function on {0, 1}n of354

degree at most d as required.355

Let us check that F satisfies the conclusion of the lemma. If z = ej , we have q(z) = 0 due to our356

choice of q (per the conclusion of Lemma 5.2), and we get F (z ⊕ x) = sign(θp(x)) = θf(x). If357

z = ei with i 6= j, then our choice of q implies F (z ⊕ x) = sign(Mθi + θp(x)). The choice of358

M guarantees that the term Mθi dominates the term θp(x) in magnitude, so we have F (s⊕ x) =359

sign(Mθi) = θi.360

We can now use Lemma 5.3 for the simultaneous extension and filtering of several functions of n− k361

variables relative to an irreducible Boolean function B.362

Lemma 5.4. For any (k + 1)-tuple of functions (f0, . . . , fk) where fj ∈ T (n− k; dj) there exists a363

(k + 1)-tuple of functions (F0, . . . , Fk) where Fj ∈ T (n; dj) such that:364

B(F0, . . . , Fk)(ei ⊕ x) = fi(x) (5.9)

for all i ∈ {0, . . . , k} and x ∈ {0, 1}n−k.365

Proof. Lemma 5.1 yields the existence of signs θi ∈ {−1, 1} for i ∈ {0, . . . , k} and θij ∈ {−1, 1}366

for distinct i, j ∈ {0, . . . , k}, such that:367

B(z0, . . . , zk) = θizi whenever zj = θij for all j 6= i. (5.10)

Now consider the functions fj ∈ T (n− k; dj), j ∈ {0, . . . , k}. Lemma 5.3 yields the existence of368

functions Fj ∈ T (n; dj), j ∈ {0, . . . , k}, such that:369

Fj(ei ⊕ x) =

{
θifi(x), i = j

θij , i 6= j
(5.11)

for all i, j ∈ {0, . . . , k} and x ∈ {0, 1}n−k.370

For any fixed i ∈ {0, . . . , k} and x ∈ {0, 1}n−k, by construction the variables zj := Fj(ei ⊕ x)371

satisfy the condition in (5.10). Therefore, (5.10) and (5.11) yield:372

B(F0, . . . , Fk)(ei ⊕ x) = B(z0, . . . , zk) = θizi = θiFi(ei ⊕ x) = θ2i fi(x) = fi(x) (5.12)

as claimed.373
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Armed with this lemma, we can now prove Theorem 4.2.374

Proof of Theorem 4.2. Lemma 5.4 demonstrates that for any tuple of functions (f0, . . . , fk) ∈375 ∏k
i=0 T (n − k; dj) there exists a function F ∈ TB(n; d0, . . . , dk) such that F (ei ⊕ x) = fi(x)376

for all i ∈ {0, . . . , k} and x ∈ {0, 1}n−k. Thus, each component fi of the original k-tuple can be377

uniquely recovered from F . Therefore, a map (f0, . . . , fk) 7→ F (if there are multiple F correspond-378

ing to some f , select one arbitrarily) defines an injection from the cartesian product
∏k
i=0 T (n−k; dj)379

into TB(n; d0, . . . , dk), completing the proof.380

As shown in Table ??, there are 16 binary Boolean operatorsB. Ten of them are irreducible, including381

AND, OR and XOR and their negations. For each such operator, the Composition Theorem 4.2 gives:382

∣∣T (n− 1; d0)
∣∣ ∣∣T (n− 1; d1)

∣∣ ≤ ∣∣TB(n; d0, d1)∣∣ ≤ ∣∣T (n; d0)∣∣ ∣∣T (n; d1)∣∣ (5.13)
Surprisingly, the intersection of all ten classes is still as large.383

Proposition 5.5. We have:384 ∣∣∣⋂
B

TB(n; d0, d1)
∣∣∣ ≥ ∣∣T (n− 1; d0)

∣∣ ∣∣T (n− 1; d1)
∣∣ (5.14)

where the intersection is over the ten irreducible binary Boolean operators.385

In particular, there are many functions f (specifically, 22n
2(1−o(1))) that can be simultaneously386

expressed as: f = f1 AND f2 = f3 OR f4 = f5XORf6 where all the fi are linear threshold387

gates.388

Proof. In the proof of the Composition Theorem 4.2 above, we showed that for each irreducible389

Boolean operator B and pair of functions (f0, f1) ∈ T (n − 1; d0) × T (n − 1; d1), there exists390

F ∈ TB(n; d0, d1) such that:391

F (0⊕ x) = f0(x), F (1⊕ x) = f1(x) (5.15)
for all x ∈ {0, 1}n−1. Obviously, this pair of equations defines F uniquely on {0, 1}, and F is392

independent of B. Thus, F lies in the intersection of TB(n; d0, d1) over all irreducible B.393
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