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Abstract

Polyp segmentation is essential for accelerating the diagnosis of colon cancer.
However, it is challenging because of the diverse color, texture, and varying
lighting effects of the polyps as well as the subtle difference between the polyp and
its surrounding area. To further increase the performance of polyp segmentation,
we propose to focus more on the problematic pixels that are harder to predict. To
this end, we propose a novel attention module named Fuzzy Attention to focus
more on the difficult pixels. Our attention module generates a high attention score
for fuzzy pixels usually located near the boundary region. This module can be
embedded in any convolution neural network-based backbone network. We embed
our module with various backbone networks: Res2Net, ConvNext and Pyramid
Vision Transformer and evaluate the models on five polyp segmentation datasets:
Kvasir [11], CVC-300 [30], CVC-ColonDB [29], CVC-ClinicDB [2], and ETIS
[28]. Our attention module with Res2Net as the backbone network outperforms
the reverse attention-based PraNet by a significant amount on all datasets. In
addition, our module with PVT as the backbone network achieves state-of-the-art
accuracy of 0.937, 0.811, and 0.791 on the CVC-ClinicDB, CVC-ColonDB, and
ETIS, respectively, outperforming the latest SA-Net, TransFuse and Polyp-PVT.
The source code is available at: https://github.com/krushi1992/FuzzyNet.

1 Introduction

Polyp segmentation is an essential task to accelerate the diagnosis of colorectal cancer[19][22][28],
which is considered the most prevalent cancer worldwide. If the polyp is detected earlier, the mortality
rate can further be reduced. Colonoscopy is considered the effective technique for CRC screening,
which detects the polyps that may cause colon cancer. Detecting polyps is a complicated process
because of their similar appearance to background pixels. Sometimes, even an experienced clinician
finds it very difficult to recognize, and thus leads to missing detection of polyps because of their
subtle difference [14] [23]. In addition, polyps are widely varied in size, texture, and color. Therefore
an accurate and automatic polyp segmentation method is required to detect the cancerous polyp in
the early-stage to reduce the mortality rate [13].

Convolution neural networks have achieved tremendous performance gain on various medical image
segmentation tasks, including the polyp segmentation [1][3][9][12] [25][37]. Various methods have
been proposed to tackle the issue of detecting difficult boundary pixels accurately, either by using
separate edge supervision [6][20] or attention modules. However, the use of edge supervision
reduces the generalization capability of the model and requires extra boundary annotations, which
are expensive. The attention-based methods used reverse attention [5], focusing on the background
region to mine the boundary clues. However, we believe the performance can be further improved if
we focus more on the difficult pixels instead of the background pixel. Therefore, in this work, we
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Figure 1: (a) An original image of the polyp; (b) the ground-truth mask; (c) the prediction mask
generated by PraNet; and (d) the prediction mask generated by our Fuzzy-Net.

propose a novel attention module named Fuzzy attention to encourage the model to focus on the hard
boundary pixels.

The pixels that are not categorized straightforwardly as foreground or background pixels are consid-
ered hard pixels. The smaller the difference between the foreground and background attention score,
the higher the complexity. Our attention module uses the above observation to calculate the final
attention score, which results in a high score for difficult pixels, usually lying around the boundary
region, and lower weights for the easy pixels. Figure 1 shows an image of the polyp, its ground
truth, and the prediction masks generated by PraNet and our FuzzyNet, respectively. It can be seen
from the original image that the region around the boundary is hard to predict, resulting in an uneven
edge, as shown in Figure 1-(c). However, our model predicts the mask closer to the ground truth
with a smooth boundary as shown in Figure 1-(d). Like reverse attention in PraNet [5], we apply this
module in parallel on the top of the last three levels of the feature map along with deep supervision.

The encoder is considered the backbone network in the segmentation task, which extracts the row
fine level to coarse level features and is further processed by various small architectures modules to
enhance the feature representation. Therefore, to observe the impact of various backbone architecture
types, we embed our module in three different networks: Res2Net [8], ConvNext [15], and PVT
[31], and compare the performance. Our result shows that the proposed module with Res2Net as a
backbone network significantly outperforms PraNet with the same backbone [5] on various polyp
segmentation datasets, including Kvasir[11], CVC-ClinicDB[2], CVC-ColonDB [29], CVC-300,
and ETIS[28]. In addition, our attention module with the PVT as a backbone network achieves
state-of-the-art accuracy on CVC-ClinicDB, CVC-ColonDB and ETIS by exceeding the performance
of recently proposed SA-Net, TransFuse, and Polyp-PVT.

The main contributions of this work are summarized below:

1. We propose a novel attention module, named Fuzzy attention, to focus more on the difficult
pixels which usually lie near the boundary region. It can be embedded in any backbone
network in parallel after the last three feature maps.

2. We investigate the impact of various types of backbone networks: Res2net [8], ConvNext[15],
and PVT[31], along with our attention module through extensive experiments.

3. Extensive experimental results show that our Fuzzy attention module outperforms the reverse
attention-based model, PraNet [5], by a significant margin with the same Res2Net backbone
on the polyp segmentation datasets: Kvasir, CVC-ColonDB [29], CVC-ClinicDB[2], CVC-
300[30]. With PVT [31] as a backbone network, we achieve state-of-the-art accuracy on the
CVC-ClinicDB, CVC-ColonDB, and ETIS datasets.

2 Related Work

Various approaches have been proposed to segment the polyp in colonoscopic images using either
handcrafted features or deep features extracted by deep learning networks. All approaches can be
broadly divided into two categories:

Classical computer vision approaches: Early polyp segmentation approaches use low-level hand-
crafted features, including texture[18] and geometric features. [17] used a simple linear iterative
clustering superpixel to segment the polyp. As mentioned above, all the method has a high false
detection rate because of the high similarity between polyps and the surrounding area.
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Figure 2: Overall architecture of FuzzyNet. It includes a partial decoder denoted as "PD" in red block
and a series of fuzzy attention modules denoted as "FA" blocks. It generates the global map from
the partial decoder and passes through the series of fuzzy attention modules which focuses on the
difficult and fuzzy boundary pixels. The deep supervision is applied at the end of the output of each
fuzzy attention module and partial decoder.

Deep learning based approaches: There have been various deep learning-based approaches proposed
for the polyp segmentation task. It started with the study [1], which first employs a convolutional
network for the polyp segmentation and outperforms the traditional methods. The U-shaped encoder
and decoder architectures: U-Net [25], U-Net++ [37], ResUNet++ [12], ACS-Net [35] and Enhanced
U-Net [22] started dominating the segmentation field because of their tremendous performance gain.

To alleviate the issues of complex boundary regions, SFA [6] and PSI [20] include an extra edge
supervision branch. However, it requires extra boundary annotation and has an overfitting problem.
PraNet [5] introduces the reverse attention mechanism to mine the boundary region gradually by
focusing more on background pixels. In contrast, to reverse attention, our module focuses more on
the complex pixels usually lying around the boundary region. ACS-Net [35] also introduces the
attention mechanism to focus more on the hard pixels, however, it employs a predefined pixel score
to classify the pixel as hard or easy.

Other attention-based models, SA-Net [32] and Enhanced U-Net [22] use different attention mecha-
nisms to give more attention to the foreground region and adaptively select the features. TranFuse
[36] and Polyp-PVT [4] use the latest vision transformer for the polyp segmentation task and achieve
an excellent result. The attention mechanism has also been successfully applied in many other
applications [7][16][26][27]. In one of our experiments, we also embedded our attention module in
Pyramid Vision Transformer and established state-of-the-art accuracy on various datasets [21].

3 Method

The overview of our proposed network is shown in Figure 2. We follow the architecture used in the
PraNet [5] and replace the reverse attention module in PraNet with our proposed Fuzzy attention
module. Specifically, our model takes the RGB image as an input and passes it through the backbone
network, followed by the partial decoder, which employs multi-resolution feature maps to generate
the initial global semantic map. This global map is then passed through a series of fuzzy attention
modules, which gradually mine the boundary cues. We apply deep supervision after each attention
module and the initial global map. The map generated by the last attention layer is considered the
final prediction map. A detailed explanation of each element of the architecture is elaborated below.
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Figure 3: The block diagram of the Fuzzy attention module. It takes the Si as input and passes it
through the Sigmoid and the reverse block to calculate the forward and reverse attention map. The
absolute difference between these attention maps is calculated followed by the reverse attention and
sigmoid activation. ′−′ represents the 1−X operation, where X is the input.

3.1 Backbone Network

In the segmentation task, the encoder is considered as the backbone network, which generates the
essential row multi-resolution features from fine level to abstract {fi, i = 1, ...5}. It is considered
the heart of the segmentation model because the model performance heavily relies on the features
generated by it. Therefore, to observe the impact of various types of backbone networks (either
convolution-based or transformer-based), we use three different networks in our experiments: Res2Net
[8], ConvNext [15], and PVT [31].

3.2 Partial Decoder

As mentioned in the previous section, the encoder generates five levels of multi-resolution feature
maps fi, i = 1, ...5. These feature maps are further divided into two types: low level {fi, i = 1, 2}
and high level {fi, i = 3, 4, 5}. As observed in [34], low-level features increase the computation cost
by a large amount and have less contribution towards increasing the performance. Therefore, we
employ the parallel partial decoder proposed in [34], which aggregates only the high-level features to
generate the global initial semantic map, and it is further refined in attention modules.

3.3 Fuzzy Attention Module

The human’s natural tendency is to roughly locate the object and then gradually mine the complex re-
gion by concentrating more on that area. We apply a similar approach for medical image segmentation
to clearly distinguish the background area and foreground objects (polyp or skin lesion) by focusing
more on the hard pixels using the Fuzzy attention module. We apply this module parallelly on the
high-level feature maps {fi, i = 3, 4, 5} which produce the resultant feature map {Ri, i = 3, 4, 5},
where R3 is used to generate the final prediction map. The block diagram of the fuzzy attention
module is shown in Figure 3

Specifically, the resultant feature maps are calculated as:

Ri = fi.Ai (1)

The attention maps Ai have high scores for difficult pixels and low scores for easy pixels. It is
mathematically formulated as:

Ai = σ(1− | Afi −Ari |) (2)

where. Afi represents the forward attention map, with a high score for the foreground object and
a low score for the background area, and Ari indicates the reverse attention map, which has a high
score for the background pixels and low score for the foreground pixels. The attention maps can be
mathematically formulated as:

Afi = σ(Up(Si+1)) (3)
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Ari = 1− σ(Up(Si+1)) (4)

where Up indicates the upsampling operation, σ(.) represents the sigmoid activation, and Si is the
global map from the previous layer. Pixel’s difficulty can be associated with the absolute difference
between the forward and reverse attention score; the lower the absolute difference, the higher the
difficulty. To focus more on the complex pixels, we further subtract the absolute difference from 1
followed by sigmoid activation as shown in equation 2.

3.4 Loss Function

We use the combination of weighted IoU loss Lw
IOU and weighted cross-entropy loss Lw

BCE as our
main loss function [24][33]. We apply deep supervision after each resultant map generated by the
attention module along with the initial global map. The total loss can be formulated as:

Ltotal = L(G,Sup
g ) +

5∑
i=3

L(G,Sup
i ) (5)

where Sg is the global map and S3, S4, and S5 are the output maps generated by the attention module.

4 Experiments

4.1 Datasets

We conducted experiments on five publicly available polyp segmentation datasets: ETIS, CVC-
ClinicDB, CVC-ColonDB, CVC-300, and KVasir. ETIS is an old dataset with 196 polyp images and
its ground truth mask. CVC-ClinicDB and CVC-300 comprise 612 and 300 images from 29 and
13 colonoscopy video sequences, respectively. CVC-ColonDB is a small-scale dataset containing
380 images from 15 short colonoscopy sequences. Kvasir dataset is relatively new, with 1000 polyp
images. We compare our FuzzyNet with state-of-the-art models: PraNet, Enhanced U-Net, ACSNet,
MSEG[10], SA-Net, TransFuse, and Polyp-PVT, along with the previous approaches U-Net, U-Net++,
and ResU-Net++.

4.2 Evaluation Metrics

We utilize the Dice coefficient and Intersection over Union (IOU) as our evaluation metrics which are
defined below:

Dice coefficient: It is defined as:

DSC(A,B) =
2× (A ∩B)

A+B
(6)

where A denotes the predicted set of pixels and B is the ground truth of the image.

Intersection over union (IoU): It is another standard metric to evaluate the performance of the
segmentation task. It is defined as:

IoU(A,B) =
A ∩B

A ∪B
(7)

where A denotes the predicted set of pixels and B is the corresponding ground truth of the set of
pixels.

4.3 Implementation Details

In our experiments, we follow the same training settings used in PraNet for the Res2Net backbone
and Polyp-PVT for ConvNext and PVT backbone. All the models are trained on a V100 GPU, with
batch-size 16 and Adam optimizer with an initial learning rate of 0.0001. We employ multi-scale
training for all the backbone networks instead of data augmentation techniques by following the
PraNet and PVT. We employ the backbone networks Res2Net, ConvNext, and Pyramid Vision
Transformer, initialize the weights with pretrained weights trained on ImageNet-1K and train them
from scratch.
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model CVC-ClinicDB Kvasir
mDice mIoU mDice mIoU

U-Net 0.823 0.755 0.818 0.746
U-Net++ 0.794 0.729 0.821 0.743

SFA 0.700 0.607 0.723 0.611
ACSNet 0.882 826 0.898 0.838
PraNet 0.899 0.849 0.898 0.840
EU-Net 0.902 0.846 0.908 0.854
SA-Net 0.916 0.859 0.904 0.847

TransFuse 0.918 0.868 0.918 0.868
Polyp-PVT 0.937 0.889 0.917 0.864

Fuzzy-Net(Res2Net) 0.919 0.867 0.889 0.830
Fuzzy-Net(ConvNext) 0.922 0.863 0.907 0.848

Fuzzy-Net(PVT) 0.937 0.889 0.913 0.864

Table 1: Results on CVC-ClinicDB and Kvasir, which represents the learning capability of the model.
It shows that our model outperforms the other models by a significant margin on the CVC-ClinicDB
dataset and achieves a comparable result on the Kvasir dataset. The reported result is the average of
three experiments.

4.4 Learning Ability

Setting: We evaluate the learning ability of our model on the dataset ClinicDB and Kvasir-Seg.
Clinic-DB consists of 612 images extracted from 31 colonoscopy videos, whereas Kvasir-Seg consists
of a total of 1000 polyp images. We follow the same setting as PraNet and Polyp-PVT, which include
900 and 548 images from ClinicDB and Kvasir-Seg datasets as the train set, and the remaining 64
and 100 images are used as the test set.

Results: Table 1 shows the result on Kvasir and CVC-ClinicDb datasets. Our FuzzyNet model with
Res2Net as a backbone network achieves 2% higher mean dice than PraNet on CVC-ClinicDB and
achieves comparable results on the Kvasir dataset which demonstrates the better learning ability of
our model. Our model with ConvNext as a backbone network outperforms the ACSNet, PraNet,
EU-Net, and SA-Net on the Clinic-DB dataset by 3.4%, 2.3%, 2%, and 0.6%, respectively, in terms
of mean-dice. In addition, it also achieves 0.9%, 0.9%, and 0.03% higher mean dice than the ACSNet,
PraNet, and SANet, respectively, on the Kvasir dataset. With Pyramid Vision Transformer as a
backbone network, we achieve the state-of-the-art accuracy 0.937 on the CVC-ClinicDB dataset and
comparable mean dice on the Kvasir dataset as Polyp-PVT.

4.5 Generalization Ability

Setting: To evaluate the generalization ability of the model, we use three unseen datasets: ETIS,
ColonDB, and CVC-300. The ETIS, ColonDB, and CVC-300 datasets consist of a total of 190, 380,
and 60 images, respectively. The images of these datasets belong to different medical centers, which
means that the training and testing sets are different and the model has not seen the test images before
during training.

Results: The result is shown in the table 2. It can be seen from the result that our model has a better
generalization performance compared to state-of-the-art models. On ColonDB and ETIS, we achieved
the highest performance by outperforming the Polyp-PVT. On CVC-300, our model achieves compa-
rable performance to Polyp-PVT. In addition, our model with Res2Net as a backbone outperforms
PraNet by 3.1%, 2.7%, and 10% on CVC-300, CVC-ColonDB, and ETIS respectively in terms of
mean dice, which demonstrates that Fuzzy Attention module has an outstanding generalization ability
compared with the Reverse Attention module in PraNet. With PVT as a backbone network, our model
outperforms the latest SANet and TransFuse by 5.8% and 6.7% on CVC-ColonDB, 4.2% and 5.5%
on ETIS respectively. It also achieves 1.1% higher mean dice than SA-Net and comparable mean
dice as TransFuse on CVC-300.
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model CVC-ColonDB ETIS CVC-300
mDice mIoU mDice mIoU mDice mIoU

U-Net 0.512 0.444 0.398 0.335 0.710 0.627
U-Net++ 0.483 0.410 0.401 0.344 0.707 0.624

SFA 0.469 0.347 0.297 0.217 0.467 0.329
ACSNet 0.716 0.649 0.578 0.509 0.863 0.787
PraNet 0.712 0.640 0.628 0.567 0.871 0.797
EU-Net 0.756 0.681 0.687 0.609 0.837 0.765
SA-Net 0.753 0.670 0.750 0.654 0.888 0.815

TransFuse 0.773 0.696 0.733 0.659 0.902 0.833
Polyp-PVT 0.808 0.727 0.787 0.706 0.900 0.833

Fuzzy-Net(Res2Net) 0.739 0.662 0.731 0.658 0.894 0.825
Fuzzy-Net(ConvNext) 0.784 0.696 0.740 0.648 0.877 0.795

Fuzzy-Net(PVT) 0.811 0.728 0.791 0.702 0.891 0.818

Table 2: Results on CVC-ColonDB, ETIS, and CVC-300 demonstrate the generalization capability
of the model. It shows that our model outperforms the other models by a significant margin on
CVC-ColonDB and ETIS and achieves a comparable result on the CVC-300 dataset. The reported
result is the average of three experiments.

model Attention mDice mIoU GFlops Parameters
Seen Unseen Seen Unseen

Pra-Net Reverse 0.8985 0.737 0.8445 0.668 13.11 32.55M
Fuzzy-Net Fuzzy 0.904 0.788 0.845 0.715 13.11 32.55M

Table 3: Comparison of the GFlops and the number of parameters of reverse attention-based Pra-Net
and fuzzy attention-based FuzzyNet along with average mean dice and mean IoU calculated by taking
the average of mean dice and mean IoU of all datasets included in type seen and unseen, respectively.

4.6 Effectiveness of Fuzzy Attention

The effectiveness of the Fuzzy attention module can be verified by comparing the result of our model
with the Res2Net backbone with PraNet. For a fair comparison, apart from the type of attention
module, we utilize a similar backbone, hyperparameters, augmentation, and regularization technique
as used in PraNet.

It can be seen from the table our model outperforms PraNet on the CVC-ClinicDB dataset by 2% and
achieves a comparable result on the Kvasir dataset. It improves the result on unseen datasets by a
significant margin of 2.7%, 10%, and 1.9% on CVC-ColonDB, ETIS, and CVC-300 respectively.
The overall result of all datasets along with GFlops and the total number of parameters are listed in
Table 3. We can observe a significant performance gain of 0.9% and 5% on the average of seen and
unseen datasets respectively. The outstanding results on the unseen dataset prove the generalization
capability of the proposed fuzzy attention, which is significantly higher than reverse attention.

Furthermore, fuzzy attention does not add an extra number of parameters and the computation cost.
With the same amount of parameters and GFlops: 32M and 13.11 GMac respectively, we achieve a
significant performance gain compared to reverse attention-based PraNet.

In addition, we visualize the segmentation mask generated by our model and PraNet. It can be
seen from the result shown in Figure 4 that our model correctly classifies the fuzzy pixels near the
boundary compared to PraNet model. For most of the images, PraNet seems to be misclassified
background pixels as foreground pixels because of the high focus on the background pixels in
reverse attention. In contrast to PraNet, the resultant mask generated by our model has well-defined
boundaries, and the results are closer to the ground truth. In addition, our model’s performance is
consistent irrespective of the lighting and reflection condition in the image. Furthermore, we also
visualize the segmentation mask generated by Polyp-PVT and SA-Net. It can be seen from the figure
that our resultant mask has fewer false positive pixels and a smooth boundary than all other methods.
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Figure 4: A comparison of the segmentation maps generated by our model, PraNet, Polyp-PVT and
SA-Net along with the original image and ground-truth mask. Our model has more sharp boundaries
than PraNet and the maps are closer to the ground-truth mask compared to other methods.The images
are taken from ETIS and CVC-ColonDB dataset.

5 Conclusion

This paper has presented a novel attention mechanism to encourage the network to focus more
on the fuzzy region, which usually lies around the boundary. We embed our attention module
with various backbone networks: Res2Net, ConvNext, and Pyramid Vision Transformer (PVT) for
polyp segmentation. Our result shows that the fuzzy attention module significantly outperforms
PraNet, which employs the reverse attention mechanism on all polyp segmentation datasets. With the
PVT as the backbone network, our model achieves state-of-the-art accuracy on the CVC-ClinicDB,
CVC-ColonDB, and ETIS dataset for polyp segmentation.
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