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Abstract

Imbuing robots with human-levels of intelligence is a longstanding goal of AI
research. A critical aspect of human-level intelligence is spatial reasoning. Spatial
reasoning requires a robot to reason about relationships among objects in an
environment to estimate the positions of unseen objects. In this work, we introduced
a novel graph attention approach for predicting the locations of query objects in
partially observable environments. We found that our approach achieved state of
the art results on object location prediction tasks. Then, we evaluated our approach
on never before seen objects, and we observed zero-shot generalization to estimate
the positions of new object types.

1 Introduction

The goal of discrete spatial reasoning is to predict the likelihood that a query object exists at a location
from observations with associated locations (1). The problem is critical to autonomous navigation
under uncertainty (2). A key difference from other types of inference is that the observation data are
not independently and identically distributed (IID), because of the location information. In this work,
we focus on an application to robot navigation. Figure 1 illustrates contextual reasoning for discrete
spatial prediction. For example, observing the position of a refrigerator and counter provides strong
evidence for the position of the stove.

Embodied visual navigation requires an agent to use visual perception to control navigation through
an environment (3). Recent progress has been made in this field with the introduction of embodied en-
vironments both scanned(4; 5) and simulated(6; 7). Several research challenges have been introduced
that require a robot to navigate to the location of unseen objects(8; 2). It is assumed that the agent
has no prior knowledge of the room layout or contents. A query object category is given to the agent.
The challenges require embodied agents to develop a semantic understanding of the composition and
spatial associations between objects either explicitly or implicitly.

In this work, we introduce an approach called Graph Attention for Spatial Prediction (GRASP). We
hypothesized that the spatial relationships among observed objects provide strong priors that could be
used to estimate the position of unobserved query objects. Our query-based representation of these
spatial relationships relies on (i) an allocentric graph representation of spatially situated objects in
the environment, (ii) query-based attention over the graph, and (iii) dimensionality-reduced object
embeddings. Our results quantify empirically two key advantages of our approach. GRASP is able to
reason over diverse layouts, object types, and quantities of objects, and our approach generalizes to
new object types that were not observed during training.
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Figure 1: An illustration of our approach to embodied contextual reasoning for spatial prediction. In
this example, the query object is the sink. (a) Egocentric robot view of the AI2Thor environment.
(b) Observed objects are maintained in an situated allocentric view of the environment. (c) Learned
object attention (blue saturation) is used to focus the graph representation of the environment on
objects with relevance to the the query object. Edges between observed objects represent distance
(d) the attention weighted graph representation is used to infer the position (red) of the query object
relative to the robot position

2 Related Work

Prior work has explored visual navigation through embodied reasoning challenges including Im-
ageGoal (9; 10), RoomGoal (11; 12), ObjectNav (13; 2), and PointGoal (11; 12; 14). Instruction-
following challenges require agents to follow a sequence of instructions (8). Progress on these chal-
lenges has been made with research into topological graphs (9; 15), recurrent networks (16; 17; 14),
and allocentric spatial memory (18; 19; 20). Our work explores new ways of estimating spatial
positions of unseen objects which is relevant for object navigation tasks.

Spatial relationship features can provide additional contextual and semantic relationships (21). The
use of these features was explored using tree-based approaches (22; 23). Spatial data from multiple
sources can be fused into a common reference to provide additional context for spatial predictions
(24; 25).

ObjectNav tasks have object types as the navigation goal. End-to-end reinforcement learning methods
have improved state-of-the-art with improved state representations (26; 27), data augmentation (28),
and auxiliary tasks (29) improve object navigation performance to new scenes. Examples of improved
state representations include the use of visual attention (26) and state priors (27).

Modular RL methods for object navigation separate the task into object localization and point
navigation (30; 31; 32). These approaches use offline pretraining to learn high likelihood regions for
object localization. Then, point navigation is used to move the robot towards those high likelihood
regions. Most recently, state of the art performance was achieved by learning potential functions to
highlight exploration frontiers with a high chance of resulting in the object being found (32). In this
work, we focus on the object localization task.

Imitation learning has been used to find object navigation policies from demonstrations (33; 34; 35)
and fine-tuning (34; 35). Self-supervised approaches have been explored that learn distance and
semantic label scores from image collections (15).
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3 Problem Definition

Object localization is a kind of spatial prediction that involves predicting the likelihood of a query
object type q at position y from observations of other discrete objects and their explanatory features.
Formally, let the environment be represented by X = {x(si)|i ∈ N , 1 ≤ i ≤ n} where N is the set
of observed objects of size n, si is the coordinate of the object relative to an origin point s0, and x(si)
is the feature vector of explanatory variables associated with the object at position si. The feature
vector consists of an object embedding and position information described in more detail in Section 4.
For a given set of observed objects X and query or target object q, we aim to estimate (i) the position
ŷ of the closest instance of the query object and (ii) the occupancy grid ẑ for the query object relative
to the agent’s position. To evaluate these estimates, we define two metrics:

Closest Point Metric – Relative to an agent’s position defined to be the origin s0, the closest instance
of the query object ŷ is represented as ŷ = F(X, q) = (r, sin(θ), cos(θ)) where (r, θ) are polar
coordinate representation relative to s0. θ is represented by sin(θ) and cos(θ) to avoid discontinuities
at 2π. The absence of the object is indicated by r being greater than a threshold t. We define the
closest point metric as the L2-norm between the ground truth y and ŷ.

Occupancy Map Metric – Estimates of the query-specific occupancy map ẑ are represented as a
matrix M where Mi,j is the probability of the query at position i, j relative to the agent’s position.
We define the occupancy map metric as the l2-norm between the ground truth occupancy map z and
estimates of the occupancy map ẑ.

4 Graph Attention for Spatial Prediction

In the following section, we introduce GRASP in more detail. Figure 1 illustrates our approach to
spatial reasoning based on allocentric graph attention.To define the feature vector x(si) for each
object, we include the vector of position si relative to s0 as polar coordinates and a pretrained word
embedding W of the named type of object i.

x(si) = [si − s0,W(ℓi)]

where ℓi is the name of the type of the object at si. In our experiments, we used the Numberbatch
embedding (36) reduced to the first 32 output elements as W . We represent observations as a graph
G(V,E). A vertex vi is defined for each observed object i as an attention-weighted composite
embedding of the relevant object. Specifically, the vertex features make use of a learned embedding
function E and a learned saliency function S . Let S(x(si), q) estimate the probability that the object
at position si is relevant for estimating the closest instance of object type q.

V (X, q) = [S(x(si), q)E(x(si)), 1 ≤ i ≤ n]

An edge ei,j ∈ E exists if ||si − sj||2 < δ. In our experiments, we set δ to 3 meters.

The output of the inference model is then

F(V, q, E) = GNN(V (X, q), E(X), q).

which produces an estimate of the closest instance of the query object in modified polar coordinates
(r, sin(θ), cos(θ)) where θ is then inferred from sin(θ) and cos(θ). The functions E and S are
approximated as MLP deep networks with parameters η and ν respectively. The function F is
approximated as a convolutional graph neural network followed by MLP layers with parameters
γ. Network inference produces closest instance estimates relative to the agent’s position in polar
coordinates (r, θ) represented as (r, sin(θ), cos(θ)) to avoid discontinuities in θ.

5 Results

We organized experiments to evaluate (i) how well GRASP predicts the location of the closest instance
and (ii) the occupancy grid associated with the object type of interest, and (iii) the ability of GRASP
to generalize to objects not seen during training.
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Figure 2: Overview of the graph attention approach to egocentric scene embedding. Variable sized
list of discrete object observations are encoded as nodes in a graph where edges encode distances
between objects. Node representations are reweighted by attention to the target object. The decoder
estimates the position estimate for the closest instance of the target object.

Dataset – The AI2Thor (6) illustrated in Figure 1 is a benchmark environment for indoor navigation
and task completion. iThor contains 120 indoor layouts and 2000 distinct object types. Public
competitions such as the Alfred challenge (8) make use of AI2Thor to evaluate autonomous task
completion algorithms. We make use of AI2Thor to both train and evaluate several approaches to
spatial prediction.

Training – We collected a dataset consisting of tuples (s0,X, q, y, z) where s0 is the agent’s position,
X is the list of observed objects and positions, q is the query object type, y is the agent relative
position of the closest instance of the query object type, and z is the occupancy map centered at the
agent’s position as defined in Section 3. To ensure similar data distributions for all approaches, the
same 80/20 split of layouts was used for training and evaluation of each approach. Training was
conducted on 1 million batches of gradient descent using the adam optimizer over 96 room layouts
and 14882 dataset tuples. We trained all approaches for 67 epochs.

Metrics – For each method, we measure both the closest point metric and the occupancy grid metric.
To facilitate comparison between methods that estimate either ẑ or ŷ, we introduced an approach
to estimate one from the other. Given ẑ, ŷ is estimated as the position with maximum probability.
Likewise ŷ can be used to estimate ẑ with a Gaussian probability distribution centered at ŷ.

Evaluation – All results that we report in Table 1 are the result of averaging over 1000 samples from
the test dataset. Samples from the test set are derived from 24 held-out room layouts. Each test
sample was derived from a random selection of test layout, agent position, query object type, and
observed objects.

Comparisons and Baselines – In this section, we describe both strong and weak baselines that we
compared in our experiments. We included a Uniform Grid baseline that assigns equal probability
over all positions in the occupancy grid. Random Grid assigns random probability over all positions
in the occupancy grid. PONI [(32)] is a recent state-of-the-art approach for object location prediction.
The approach makes use of a UNet (37) architecture to highlight exploration frontiers within an
occupancy grid with high likelihood of containing the object. In addition to PONI, we also tested
another variant of the UNet architecture with Gaussian blur to better account for positional uncertainty.
These approaches make use of a one hot embedding over channels for object type representations.
The training loss for these approaches is MSE between predicted and ground truth grid distance.
PONI makes (32) use of dense environment representations. Dense environment representations use
of occupancy grids to represent the positions of observed objects. We included several approaches
with dense representations for comparison. To encode object types, these methods made use of
one-hot encoding across channels. VAE [(38)] is a conditional variational autoencoder for predicting
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the occupancy grid for the query object location. We tested a variant of VAE with Gaussian blur
applied to the output to account for positional uncertainty. These approaches make use of a one-hot
embedding over channels for object type representations. The training loss for these approaches
is MSE between predicted and ground truth grid distance along with the typical KL loss term for
controlling the latent distribution.

Novel Layouts Novel Layouts and Objects
Approach Backbone Representation Grid Distance Point Distance Grid Distance Point Distance

Uniform Grid baseline NA 3.95 ±0.007 9.41 ±0.006 3.15 ±0.027 10 ±0.000
Random Grid baseline NA 3.95 ±0.007 9.39 ±0.005 3.15 ±0.026 10 ±0.000
PONI [(32)] UNET Dense 2.67 ±0.007 9.54 ±0.003 3.15 ±0.026 10 ±0.000
UNET+blur UNET Dense 2.59 ±0.007 9.47 ±0.008 3.15 ±0.027 10 ±0.000

VAE VAE Dense 2.89 ±0.020 9.50 ±0.001 3.16 ±0.028 10 ±0.000
VAE+blur VAE Dense 2.89 ±0.025 9.50 ±0.003 3.16 ±0.029 10 ±0.000

GRASP [Ours] GNN Sparse 1.79± 0.056 2.02± 0.066 1.91± 0.054 2.34± 0.069

Table 1: Summary of results for two experimental settings: (i) novel room layouts, and (ii) novel
room layouts and novel query objects. We reported occupancy grid distance and closest instance point
distance for each approach. Approaches are organized by network type and observation encoding.
Additional method details include environment representation and neural network backbone when
applicable. The lowest error in each category is highlighted in bold. Results are shown along with
95% confidence intervals

5.1 Generalizing to New Layouts

In this experiment, we evaluated the ability of the approaches described in Section 5 to generalize
to new layouts. Training and evaluation were conducted as described previously. The results of our
experiments are summarized in Table 1. We found that GRASP out performed the other baselines and
state of the art approaches like PONI (32). The sparse allocentric graph representation of observations
in the environment is a key difference between GRASP and the others in the comparison. We found
that approaches that relied on dense representations of the environment like PONI, VAE, and UNet-
blur performed better than chance for grid distance prediction but struggled to perform over chance
for closest point prediction. The difference may be due to the conversion from an occupancy map
output to a point prediction. The point estimate was taken to be the centroid of the region with highest
probability. While the centroid may be close to a real instance of the query object, it may not be the
closest instance to the robots position.

5.2 Generalizing to New Layouts and New Object Types

In our second experiment, we evaluated the ability of the approaches described in Section 5 to
generalize to new layouts and object types that were not observed during training. During training,
we withheld 10% of object types at random from the dataset. During evaluation, query objects were
only selected from the set of withheld object types. Other than these changes, training and evaluation
were conducted as described previously.

The results of the experiment are described in Table 1. We found that GRASP out performed baseline
and state-of-the-art approaches like PONI (32). A key design difference between GRASP and the
others was the use of dimensionality-reduced object embeddings for representations. In this study,
we used pretrained and frozen Numberbatch (36) embeddings. The embeddings have the property
that the representation of semantically similar objects are close in the latent space. The semantic
relationships between objects withheld from training and those included in training allowed GRASP to
successfully generalize to query novel query objects. Approaches based on one-hot representations of
objects failed generalize because they were not able to represent the novel objects during evaluation.

6 Conclusions

In this work, we introduced a new approach for object location prediction called GRASP. We
demonstrated empirically that our approach achieves state of the art performance for predicting
the location of unobserved objects based on the occupancy grid and closest instance metrics. Our
experiments demonstrated that GRASP was able generalize to new layouts and object types without
retraining.
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