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Abstract

Attention mechanisms have recently demonstrated impressive performance on
a range of NLP tasks, and attention scores are often used as a proxy for model
explainability. However, there is a debate on whether attention weights can, in fact,
be used to identify the most important inputs to a model. We approach this question
from an information theoretic perspective by measuring the mutual information
between the model output and the hidden states. From extensive experiments, we
draw the following conclusions: (i) Additive and Deep attention mechanisms are
likely to be better at preserving the information between the hidden states and the
model output (compared to Scaled Dot-product); (ii) ablation studies indicate that
Additive attention can actively learn to explain the importance of its input hidden
representations; (iii) when attention values are nearly the same, the rank order of
attention values is not consistent with the rank order of the mutual information
(iv) Using Gumbel-Softmax with a temperature lower than one, tends to produce a
more skewed attention score distribution compared to softmax and hence is a better
choice for explainable design; (v) some building blocks are better at preserving the
correlation between the ordered list of mutual information and attention weights
order (for eg. the combination of BiLSTM encoder and Additive attention). Our
findings indicate that attention mechanisms do have the potential to function as a
shortcut to model explanations when they are carefully combined with other model
elements.

1 Introduction

Attention mechanisms have been used as a way to provide insight into the workings of deep learning
models in several tasks [25; 4; 11; 12; 18] However, there is a debate about whether attention weights
are a good proxy for explanations. In [5], the authors argue that the attention weights cannot be
used for explanations by (1) showing the inconsistency between the attention weights and other
feature-importance measures; (2) showing an alternative attention distribution can yield similar results
to those obtained by the original model. However, in [24], it was shown that the attention weights
obtained from the original model are much more effective at prediction than the manually input
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decision-imitative attention weights. This result, while weakening the claim that “attention is not
explanation”, does not suggest that the attention mechanism is explanation.

In this work, we continue to research this question, but from an information theoretic perspective. We
focus on the encoder-attention-decoder structure [1], which is one of the most common structures
used in NLP tasks. Our analysis is different from those of [5; 24], where the explainability of attention
weights with respect to (w.r.t) the model inputs (e.g., token sequences) is studied. We focus on the
attention mechanism itself and aim to evaluate if the attention mechanism can explain the importance
of its inputs. Specifically, we look into representations of individual tokens, which are the input to
the attention layer and the model output, and explore the ability of attention weights to serve as a
proxy for the explanation.

Our goal is to understand what role the attention mechanism plays in the encoder-attention-decoder
framework from an information theoretic perspective. We ask the following questions: (1) how does
the choice of the types of attention mechanism affect the amount of information that is encoded in the
representations, which are inputs to the attention layer? (2) Can we identify specific combinations
of "encoders" and attention mechanisms that are best suited to build explainable models? (3) Can
attention mechanisms learn to assign higher attention values to representations that have higher
mutual information (MI) w.r.t the model output?

To answer these questions, we start by estimating the MI between the model output and the inputs
of the attention layer (e.g., representations of the tokens). The measured MI is representative of the
amount of information about the outputs that is presented in each representation. By rank ordering
the attention values and observing the variation of the corresponding MI values, we can estimate how
closely the attention values track the information contained in the output values.

By measuring these relations across various types of encoder and attention mechanisms, we find that
the attention scores obtained from Additive attention [1] are the best proxy for explaining a model
compared to Scaled Dot-Product [21] and Deep [14] attention mechanisms. Additionally, we find
that the combination of the BiLSTM encoder and Additive attention [1] mechanism consistently
yields attention score ranks that are positively correlated to the ranking of MI between the output and
the representations.

Then, based on the combination of BiLSTM and Additive attention mechanism, we investigate the
third question, namely, is the attention mechanism able to learn to assign higher attention scores to
the representations with higher MI. We find that the Additive attention mechanism can indeed actively
learn to assign higher scores to the input representations that contain more information about the
output. Moreover, as in [24], we conduct an adversarial distribution study to assess the robustness of
attention scores to such manipulations. Our results show that, even under an adversarial manipulations
of the attention distribution (designed to produce similar output distribution while maximizing the
Kullbach-Leibler (KL) distance from the the original distribution of the attentions), the attention
weights still track the hidden representations with high MI. These findings are encouraging that the
attention mechanism has the potential to be used as a proxy for the model explanation. We summarize
our contributions as follows:

• We analyze the workings of the attention mechanism from an information-theoretic perspec-
tive;

• We conduct extensive experiments across various types of encoder and attention mechanisms
and find that the combination of BiLSTM and Additive attention can be used to construct
explainable models, since higher attention scores in this combination are always assigned to
the representations that have the highest mutual information values with the model output.

• We find that attention scores are unable to track informative inputs when their values are
close. We also find that increasing the differences in attention values can improve their
explainability in most cases.

• We find that the attention mechanisms can actively learn the important input representations;

• We conduct adversarial distribution analysis on attention weights and show that the attention
modules are robust to such manipulations.
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2 Preliminary

In this work, we focus on NLP tasks and follow a general encoder-attention-decoder structure. We
denote the model inputs x ∈ RT×|V| as a sequence of tokens with length T , where each token is
represented as a one-hot vector indicating a specific word in the vocabulary set V . Firstly, the inputs
are passed through the embedding layer to obtain a dense representation xe ∈ RT×d, where d is
the embedding size. Then the embedded inputs are fed into the encoder (Enc) to produce T hidden
representations: h = Enc(xe) ∈ RT×l, where l is the size of the representation vector. Next, a set
of T attention scores â ∈ RT for the hidden representations h is calculated as: â = Attn(h, Q)
with some attention mechanisms Attn. Here, Q ∈ Rl is the query vector in some task1 to obtain a
query-related attention. Then, a context vector c ∈ Rl is calculated as the attention-weighted sum of
all hidden representations: c =

∑T
i=1 aihi, where hi is the ith hidden representation in h and ai ∈ â

is the attention score for hi. Finally, the decoder (Dec) processes this context vector and produces
the final output of the model ŷ = Dec(c) ∈ Ro, where o denotes the size of the output and varies
depending on the specific tasks for which the model is deployed (e.g. for binary classification o = 1
and for multi-class classification o > 1 ).

In the following sections, we will introduce the types of attention mechanisms (Attn), encoders
(Enc), and decoders (Dec) that we consider.

2.1 Attention Mechanisms

We consider three types of attention mechanisms for the Attn function described above: Scaled
Dot-Product [21] (denoted as Dot in the rest of paper), Additive [1], and Deep [14]. For the hidden
representations h, query vector Q and softmax function σ, the Dot attention scores are calculated as:

AttnDot(h, Q) = σ(
hQ√
m
) (1)

The Additive attention is defined as:

AttnAdd(h, Q) = σ(W1tanh(W2h+W3Q)), (2)

where W1, W2 and W3 are trainable weights. The Deep attention is defined as:

AttnDeep(h, Q) = σ(D(Whh+ WQQ)) (3)

where D is a stack of s fully connected layer with RELU activation:

D(x) = W (s)RELU(W (s−1)RELU(...W (1)RELU(x))) (4)

Note that the query vector is not considered in the original design of the Deep attention mechanism.
We extend it to process query vector by adding an extra weight WQ.

The above definitions consider the existence of query vectors. It is, however, not applicable in the
classification tasks considered in our experiments, where there is no query vector. We hence adjust
the usage of the above attention mechanisms and make them fit well in the case where only h is given.
For the decoder, we simply use a fully-connected layer with an activation function applied on its
output (e.g., Sigmoid or Softmax) to map the context vector c to the output ŷ, since our main target is
to evaluate the explainability of attention modules and not performance.

For Additive and Deep attention, we simply remove the terms that contain query vectors: we remove
W3Q from Eq. 2 and for Dot, we use the below functions instead:

AttnDot(h) = σ(WD
1 h), (5)

where WD
1 is a trainable parameter.

2.2 Encoder and Decoder

In our experiments, we consider three types of encoder modules, which have different capacities for
modeling contextual information. The encoders used in our experiments are Bi-LSTM, convolutional

1For example, this query vector can be either hidden representation of question in question and answering
tasks or hypothesis in natural language inference
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neural networks (CNN), and multi-layer perceptron (MLP). Bi-LSTM is believed to have the capacity
to incorporate long-distance contextual information and can be useful for processing longer texts.
CNN can only capture the information from a fixed number of neighboring elements where the
number is decided by the kernel size of the convolutional layer. MLPs use an affine neural network to
process each embedded input (i.e., one row in xe) individually, and information from other time steps
is never considered.

For the decoder, we simply use a fully-connected layer with an activation function applied on its
output (e.g., Sigmoid or Softmax) to map the context vector c to the output ŷ, since our main target is
to evaluate the explainability of attention modules and not performance.

3 Information Theoretic View of Attention

In this section, we describe how we evaluate the explainability of the attention module from an infor-
mation theory perspective. In Section 3.1, we describe the Information Bottleneck (IB) principle [19]
and another related method and discuss their relationship to the explainability of deep models in
general. Inspired by these methods, we use mutual information to understand the explainability of
the attention module, as described in Section 3.2.

3.1 Background

The information bottleneck (IB) method [19] was used to understand the workings of a general deep
neural network (DNN) [20]. The IB method showed that deep neural networks optimize each layer’s
mutual information on input and output variables, resulting in a trade-off between compression and
prediction and concludes that the optimal model transmits as much information as possible from
the input X to the output, Y , through a compressed representation (the hidden states in a DNN), X̂ ,
and notes that X → X̂ → Y forms a Markov chain. They also showed that the stochastic gradient
descent (SGD) algorithm followed the IB principle. Intuitively, the optimal X̂ disregards all irrelevant
parts in X with respect to Y and only keeps the relevant parts.

Recently an approach called variational information bottleneck for interpretation (VIBI) was proposed
for generating model agnostic explanations [2], building on the IB theory. VIBI builds a trainable,
post-hoc, model-agnostic explainer and consists of two parts: an explainer and a model approximator.
The key difference between VIBI and IB is that VIBI considers instance-wise cognitive chunks (units
that will act as explanations) and trades-off sufficiency with the brevity of the explanations.

Our work here is inspired by the above two approaches. In contrast to these approaches, however, we
are neither trying to design an optimal DNN nor create a model agnostic explainer. We are interested
in investigating the use of attention weights as a proxy for explanations since, if successful, attention
weights can be a shortcut to explanations. We will do this by investigating the mutual information
between the input and output of the attention modules under various settings.

3.2 Analyzing the Attention Module using Mutual Information

As mentioned earlier, previous works [5; 24] assess the explainability of attention mechanisms by
linking the attention scores to the importance of each token in the input sequence.

In this work, we evaluate if attention scores can be relied upon to explain the importance of the inputs
to the attention mechanism. Specifically, we seek to understand how the attention scores are related
to the information contained in the attention layer’s input. Here, explainability is measured by the
tie-up between attention scores and the mutual information between the input to the attention layer
and the model output.

The input to the attention layer is a sequence of hidden representations of the token sequence. Each
hidden representation is associated with an attention score. We first rank these attention scores. We
then create a vector of hidden representations formed by grouping the hidden representations for each
data point with the same rank (see Fig 1). We then calculate the MI between the output and the vector
of hidden representations for each rank.

This allows us to answer the question: “does the attention mechanism assign the highest attention
score to the most informative (w.r.t model output) input hidden representation?”
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Figure 1: Diagram of collecting hidden representations for estimating mutual information. Each row
represents a sequence of hidden representations of one data sample; Each cell represents one hidden
representation vector where the number inside represents the rank of attention score assigned to this
hidden state. On the right, it shows the collected hidden representations.

3.2.1 Estimating Mutual Information

To estimate MI, we need to consider hidden representations that are of the same attention rank
as samples from a discrete distribution. Similar to the previous works [15; 22], we discretize the
representations by clustering them into a large number of clusters. Then we use cluster labels instead
of the continuous representations in the MI estimator.

Specifically, we use k-means clustering to quantize the hidden representations and the output logits.
We cluster the continuous representations into N = 50− 200 clusters. The value of N is selected as
the minimal value that can ensure each centroid has at least two samples. For the binary classification
task, we cluster the output logits into N = 5 clusters. For multi-class classification tasks, such as
NLI and Q&A, we directly use the predicted categories.

In practice, the sequences of hidden representations are of variable length. So, we pick the k hidden
representations with the highest attention scores. If k is too small, then many hidden representations
will not be included in the computation, and we may be estimating a local maximum of the MI; If k
is too large, some of the samples may not have sufficient length and hence will have to be removed
from consideration when calculating the MI estimate. Hence the estimate could be noisy. Thus,
we compromise on selecting k as the minimum value that satisfies either of the following criteria:
10-th percentile of sequence length or the critical value of k such that attention weights in 80% of
the selected hidden representations are larger than 10−5. The later criteria is based on the facts that
extreme small attention weights will greatly reduce the gradients propagated to the corresponding
hidden representation and hence is less likely to be “informative”.

Thus, we compromise on selecting k so that the attention weights of 80% of the kth hidden represen-
tations are larger than 10−5. The reason for this is that the hidden representations with extremely low
attention weights are rarely updated to minimize the training error (due to small gradients) and hence
have less likely to be informative.

4 Tasks and Datasets

We follow the NLP tasks and datasets that are considered in [5] and their implementation for data
pre-processing and model training. The NLP tasks include binary text classification, natural language
inference and question answering. The statistics of all datasets are described in Table 1

Binary Text Classification We use a total of 7 datasets for the text classification task. They include
two sentiment analysis datasets from Standford Sentiment Treebank (SST) [17] and the IMDB Movie
Reviews [10], where the target prediction is a binary variable to indicating positivity or negativity.
The other five datasets include the Twitter Adverse Drug Reaction dataset [13], where the task is
to identify if adverse drug reactions are mentioned in a tweet; 20 Newsgroups dataset2, where the
task is to distinguish if a news article is describing hockey or baseball; AG News Corpus3 dataset,
where the task is to discriminate between world and business articles; Anemia and Diabetes datasets

2https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups
3http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
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Dataset |V| Avg. length # Train # Test Performance (BiLSTM)
SST 16175 19 3034 / 3321 863 / 862 0.82

IMDB 13916 179 12500 / 12500 2184 / 2172 0.90
ADR Tweets 8686 20 14446 / 1939 3636 / 487 0.86

20 Newsgroups 8853 115 716 / 710 151 / 183 0.92
AG News 14752 36 30000 / 30000 1900 / 1900 0.96

Diabetes (MIMIC) 22316 1858 6381 / 1353 1295 / 319 0.89
Anemia (MIMIC) 19743 2188 1847 / 3251 460 / 802 0.91

bAbI (Task 1 / 2 / 3) 40 8 / 67 / 421 10000 1000 0.98 / 0.74 / 0.57
SNLI 20982 14 182764 / 183187 / 183416 3219 / 3237 / 3368 0.78

Table 1: Dataset statistics. Generally, we follow the train-test split method used in [5]. For train
and test size, the number of samples in each class is listed and separated by “/”. The classes are
seperated as 0/1 for binary classification (top), and 0 / 1 / 2 for NLI (bottom). Average length is in
tokens. We report the accuracy of the BiLSTM encoder + Additive attention mechanism. We note
that results using CNN and MLP encoders are comparable for classification though markedly worse
for QA tasks.

from MIMIC ICD9 [7], where the tasks are to determine the type of Anemia (Chronic or Acute) and
whether a patient is diabetic or not, respectively.

Natural Language Inference: We consider the SNLI [3] dataset, where each sample contains a
pair of sentences and a classification label to indicate the textual entailment within the sentence pair.
There are three possible classification labels: entailment, contradiction, and neutral.

Question Answering We use bAbI [23] dataset. Each sample in bAbI contains a triplet of paragraph-
question-answer, where the answer is one of the anonymized entities in the paragraph. The task
requires the model to select an answer from the paragraph given the question. Specifically, we
treat each of the three datasets presented in the original bAbI datasets as an individual dataset. The
differences between them are the number (from 1 to 3) of supporting statements (coherent with each
other) for answering a question.

5 Results

We now investigate if the attention scores are related to the amounts of information that the hidden
states preserve about the model output using Kendall correlation between the ranks of mutual
information and attention scores.

Figure 2: Box plots of weighted Kendall correlation between attention and mutual information for
the representations (y-axis). X-axis denotes the types of the attention mechanism; Encoder variants
are denoted by different colors.
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Kendall correlation [8; 16] is a statistic used to measure the ordinal association between two measured
quantities. If the hidden representations with the highest attention scores also correspond to the
highest value of mutual information between the input to the attention mechanism and the model
output, we can conclude that there is a strong correlation between the attention scores and the mutual
information. We measure Kendall correlation τ between (m1, ...,mk) and (¯̂a1, ..., ¯̂ak), where ¯̂ai
is the mean of the ith largest attention scores across test dataset and mi is MI between the hidden
representation corresponding to the ith value in the ordered attention score and the output. The
highest value of τ is 1, and occurs when the rank orders of the two quantities are the same (i.e., most
attended hidden states are the most informative about the output).

We use the weighted Kendall correlation [16] with the attention scores (i.e., ¯̂ai) as the weights. We do
this to ensure that the mismatches at the high end (higher-ranked values) of the vector are penalized
more than mismatches at the lower end of the vector.

Figure 2 shows box plots of weighted Kendall correlation of 10 runs for each combination of
encoder and attention mechanism4. It illustrates that Deep attention and Additive attention achieves
comparable results across all types of encoder on most classification datasets (except MLP encoder
on Anemia dataset). For Q&A and NLI tasks, we observe that τ values drop for all datasets, with the
drops being more significant when the MLP encoder is used. The Dot attention mechanism shows
much lower correlations compared to Deep and Additive attention mechanisms on all datasets and all
types of encoders.

The average value of τ (across all datasets and all encoder types over 10 runs) for the Additive, Deep
and Dot attentions are 0.80, 0.74, and 0.45, respectively. This indicates that among the three attention
mechanisms, Additive attention mechanism is the best at indicating the most informative hidden
states. We also find that the combination of Additive attention and BiLSTM has the best τ most of the
time, with an average of 0.92. The τ values for CNN and Additive attention, CNN and Deep attention
and BiLSTM and Deep attention are also high at 0.88, 0.83 and 0.80 respectively.

In the interest of reproducibility, we report the model accuracy of the BiLSTM and Additive attention,
averaged over 10 different initialization seeds. For each random seed, we run the model 10 times.
The results show negligible differences in model performance where the average absolute difference
on Kendall τ is 0.02 and the maximum difference is 0.05 on AG News Corpus.

5.1 Ablation

In this section, we address the question: can the attention module learn the highest mutual information
representations? We answer this question via an ablation study. In the Fix Rep setting, we study the
effect of the attention mechanism by fixing the representations that are input to the attention module
and train the attention mechanism from scratch. In the Fix Attn setting, we fix the attention scores,
and train both the encoder and decoder from scratch to figure out if the BiLSTM would somehow
“move” the informative representations to the positions with high attention scores. In this section, we
focus on the setting of BiLSTM + Additive because this setting shows the most promising results so
far.

The changes in weighted Kendall correlation between the normally trained BiLSTM+Additive and
models trained in the above settings are reported in Table 2. From this table, we notice that there is a
large drop in the Kendall correlation in the Fixed Attn setting, whereas there is no drop in the Kendall
correlations in the Fix Rep setting. Since the Kendall correlations were near perfect (i.e τ ∼ 1) for
the normally trained BiLSTM+Additive, this implies that the rankings of the MI and attention scores
do not correlate well when the attention values are forced to a constant. This implies that the additive
attention mechanism plays a vital role in tracking the representations with highest MI. Moreover, in
the Fix Rep, we observe that the resultant weighted Kendall correlation either increase or remain
the same. This indicates that BiLSTM does not add to the ability of keeping the correlation between
MI and attention scores. This indicates that, under the same tasks, datasets and training objective
functions, the additive attention modules learn to assign higher attention scores to the representations
with higher MI w.r.t the output.

4The details of the model settings and training are discussed in Appendix A
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Table 2: Differences in weighted Kendall correlation between normally trained BiLSTM+Additive
and the variants under special settings (Fix Rep and Fix Attn). ∆τ = τnormal − τspecial settings.

Dataset ∆τ
Fixed Attn Fixed Rep

SST 0.71 -0.02
IMDB 0.16 -0.01

AG News. 0.75 -0.07
ADR Tweets. 0.30 0.00

20News 1.32 -0.07
Anemia 0.97 -0.01
Diabetes 1.23 -0.01
bAbI 1 1.70 -0.02
bAbI 2 1.22 -0.06
bAbI 3 0.66 0.00
SNLI 0.07 -0.05

5.2 Adversarial Model

Both [5; 24] claim that the premise of ”attention is explanation" is that alternative attention weights
ought to yield corresponding changes in output. They demonstrated that there exists an adversarial
attention distribution that is very different from the distribution of the attention weights in the normally
trained models that still yields similar output distribution. In this section, we repeat our experiments
in the Section 3.2 under adversarial settings to evaluate if the conclusions change.

We consider the adversarial model proposed in [24] as the scenario considered in [5] is less realistic
(a detailed discussion can be found in Section 2.1 of [24]). Given the base model Mb, Authors of
[24] train a model Ma whose explicit goal is to provide similar prediction scores for each instance
while distancing its attention distributions from those of Mb. The loss formula is defined as:

L(Ma,Mb) =

n∑
i=0

TVD(ŷia − ŷib)− λKL(âia − âib), (6)

where ŷi and âi denote predictions and attention distributions for the ith sample, respectively and λ
is a hyperparameter. TVD stands for total variation distance, and KL stands for the Kullback–Leibler
Divergence. In [24], the above adversarial model is only tested on the classification datasets. To
show how well the adversarial models are trained, we report the highest F1 scores of models, the
divergence of attention distributions from the base, divergence of output distribution between the
base and adversarial as well as their λ setting, in Table 3. In our work, we do the same. We also tried
to extend their method of adversarial distribution generation for other datasets (Q&A and NLI tasks),
but it appears that this model does not work to produce different adversarial distributions for these
tasks. Hence we test against adversarial distributions for classification tasks.

Table 3: Evaluation and settings of the adversarial models. We use Jensen Shannon divergence (JSD)
for measuring the divergence of output distributions.

Dataset λ Accuracy (↑) TVD (↓) JSD (↑)
SST 5.25e-4 0.82 0.036 0.316

IMDB 8e-4 0.90 0.021 0.482
AG News. 5e-4 0.96 0.009 0.664

ADR Tweets. 5e-4 0.87 0.001 0.194
20News 5e-4 0.90 0.037 0.391
Anemia 5e-4 0.91 0.020 0.384
Diabetes 2e-4 0.89 0.021 0.464

The changes in weighted Kendall correlation between the normally trained BiLSTM+Additive and
models trained in the adversarial setting are reported in Table 4. We notice that there is not a big
drop in the value of τ . This implies that the attention values are still tied to the mutual information
between the representation and the output.
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Table 4: Differences in weighted Kendall correlation between normally trained BiLSTM+Additive
and its adversarially trained counterparts. ∆τ = τnormal − τadv.

Dataset ∆τ
SST 0.04

IMDB 0.08
AG News. 0.05

ADR Tweets. 0.02
20News 0.09
Anemia 0.02
Diabetes 0.05

Table 5: Each entry reports the value of N/M, where M: total number of model settings. N: number
of model settings (the combination of encoder and attention) for which the Kendall τ increases after
using the Gumbel-Softmax attention layer.

Dataset Deep Dot Additive Average
Classification 20/21 19/21 20/21 59/63

Q & A 6/9 6/9 8/9 20/27
NLI 2/3 1/3 3/3 6/9

Average 28/33 25/33 31/33 85/99

5.3 Towards Designing Explainable Attention Networks

We are interested to know when the attention weights lose their validity to indicate the most important
hidden representations. We find that the attention weights for the models with lower Kendall τ tend
to be more uniformly distributed than the models that achieve higher Kendall τ . The finding shows
that the attention weights are not accurate indicators of the quantity of information when attention
weights are close. This finding would caution against using attention values as explanation without
considering their relative magnitude.

To further validate this hypothesis, we intervene in the attention scores generation process so that the
differences between attention scores are larger. To do so, we simply replace the Softmax function σ
(in Eq. 1, 2, 3) in the attention layer with the Gumbel-Softmax function [6] with a temperature of
0.8. By setting the temperature to be smaller than one, the Gumbel-Softmax function is more likely
to produce a “non-uniform” distribution than the Softmax function. Table 5 reports the statistics of
changes in the Kendall τ for the models with the Gumbel-Softmax attention layers. We find that 85
out of 99 models can achieve higher or unchanged5 Kendall τ when the Gumbel-Softmax is used to
generate diverse attention values.

These results answer our questions and suggest possible strategies to design explainable attention-
based networks for NLP tasks. Moreover, we see that using Gumbel-Softmax along with Additive
attention mechanisms or on classification tasks improves the Kendall τ in most cases. However, such
clear pattern is relatively weak in either Deep and Dot attentions or Q&A and NLI tasks.

6 Limitation

In order to complete the analysis of whether attention weights can indicate the most significant
input to a model and hence provide an explanation of the model’s performance in terms of its most
significant inputs, we would need to tie the model input to the model output. So far, the analysis
presented in this paper ties the output to the input to the last hidden layer. Further analysis will be
necessary before we fully understand how to use attention weights as explanations.

7 Conclusions and Future Work

In this work we make a case that attention can in fact be used as a proxy for explanation of a model,
when viewed from an information theoretic perspective for NLP classification tasks. We notice that

5We note that models with unchanged Kendall τ are originally near perfect (τ ∼ 1) Softmax attention layer.
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(1) the Additive and Deep attention modules are the best at tracking the representations with highest
mutual information between the model output and the input to the attention unit; (2) of all models
tested, BiLSTM+Additive attention seems to be the best at preserving the relationship between MI
and attention weights; (3) when attention scores are more diverse, they are more representative of the
importance of the inputs (4) additive attention mechanism is able to learn to assign highest attention
weights to the representations with maximum MI and (5) Gumbel-Softmax is better at generating
non-uniform distribution of attention values and hence better option for explainable model design for
NLP classification tasks.

It would be interesting to explore more models in combination with the additive attention function.
We believe this result help in constructing more explainable models using these building blocks.
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A Appendix A: Model Settings and Implementations

We acknowledge that most of our implementations of model training and datasets processing are
originally derived from the work of [5], where the codes can be found at https://github.
com/successar/AttentionExplanation. In our experiments, we consider three types of
encoder and three types of attention mechanisms. Therefore, there are nine kinds of models obtained
by combining the encoders and attentions. We use the same settings for the same type of encoders.

For the BiLSTM encoder, we use one layer, bidirectional LSTM model with a hidden size of 128
for each direction. For the MLP encoder, we use a single hidden layer MLP with a hidden size of
128. For the CNN encoder, we set the sizes for the stacked filters as [1, 3, 5, 7, 15] and the number of
output channels as 128.
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During training, we use Adam [9] optimizer with a learning rate of 0.001 and batch size of 32. We
also set the weight decay coefficient to 10−5. The training process is stopped at the best performance
on the validation dataset.
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