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Abstract

With the growing adoption of deep learning for on-device TinyML applications,
there has been an ever-increasing demand for efficient neural network backbones
optimized for the edge. Recently, the introduction of attention condenser networks
have resulted in low-footprint, highly-efficient, self-attention neural networks that
strike a strong balance between accuracy and speed. In this study, we introduce a
faster attention condenser design called double-condensing attention condensers
that allow for highly condensed feature embeddings. We further employ a machine-
driven design exploration strategy that imposes design constraints based on best
practices for greater efficiency and robustness to produce the macro-micro ar-
chitecture constructs of the backbone. The resulting backbone (which we name
AttendNeXt) achieves significantly higher inference throughput on an embedded
ARM processor when compared to several other state-of-the-art efficient backbones
(> 10× faster than FB-Net C at higher accuracy and speed and > 10× faster than
MobileOne-S1 at smaller size) while having a small model size (> 1.37× smaller
than MobileNetv3-L at higher accuracy and speed) and strong accuracy (1.1%
higher top-1 accuracy than MobileViT XS on ImageNet at higher speed). These
promising results demonstrate that exploring different efficient architecture designs
and self-attention mechanisms can lead to interesting new building blocks for
TinyML applications.

1 Introduction

Over the past decade, Deep Learning has made tremendous strides in achieving or even exceeding
human-level performance in image perception tasks such as object segmentation, detection and
classification. Many key emerging technologies such as autonomous driving, automated industrial
inspection and augmented/virtual reality applications rely on the aforementioned perception tasks to
work effectively. Most real world applications typically require on-device deployment of deep neural
networks (DNNs) for the purposes of real-time inference, privacy and security. However, DNNs
typically require significant on-board computational resources which makes them challenging to
deploy on edge devices. Given the potential of Deep Learning on the edge, there has been significant
effort in recent years on developing highly efficient DNNs for resource constrained devices [1–5],
with different strategies introduced to find a strong balance between efficiency and accuracy. For
example, MobileNet [4] and FB-Net [2] architectures leveraged bottleneck inverted residuals blocks
to achieve efficient networks. In another example, MobileOne [5] architectures leveraged network re-
parameterization to eliminate branches within the DNN architecture to achieve low latency inference.
However, much of the aforementioned methods emphasized identifying efficient architectural patterns
to discover optimal DNNs.



Very recently, given the success in attention mechanisms in deep learning for improving a neural
network’s focus on relevant stimuli while attenuating irrelevant stimuli, there has been growing
interest in exploring the utility of self-attention mechanisms for constructing efficient DNNs. One
such effort yielded MobileViT [1] architectures which leveraged self-attention within a vision
transformer architectural design to achieve highly efficient DNNs. Another recent effort yielded the
concept of attention condensers [6, 7], a novel self-attention mechanism that learns and produces a
condensed embedding characterizing joint local cross-channel activation relationships. The use of
attention condensers has led to small footprint, highly efficient self-attention DNNs called attention
condenser networks that strike a strong balance between accuracy and latency [8, 7, 9, 10]. As
such, the incorporation of self-attention for improving the balance of efficiency and accuracy in deep
neural network architecture design holds tremendous promise but is only in its infancy of scientific
exploration.

Motivated to further improve the efficiency of attention condenser networks, in this study we intro-
duce a double-condensing attention condenser (DC-AC) self-attention mechanism, an enhancement
of the attention condenser mechanism proposed in [6]. The key enhancement to the original atten-
tion condenser design is the introduction of an additional condensation mechanism on the input
features, which enables more condensed feature embedding to be learned for improved balance
between efficiency and representational performance. In addition, we leverage a machine-driven
design exploration strategy [11] that imposes best practices design constraints for greater efficiency
and robustness to produce macro-micro architecture constructs that leverage the proposed DC-AC
mechanism, resulting in a fast backbone architecture we name AttendNeXt.

The paper is organized as follows. Section 2 details the machine-driven design exploration strategy
used to create AttendNeXt, the architecture of the double-condensing attention condenser design, and
the network architecture of AttendNeXt. Section 3 presents the experimental setup of the study along
with the experimental results and discussion comparing AttendNeXt with state-of-the-art efficient
backbones.

2 Methods

2.1 Double-condensing attention condensers

In this study, we introduce a double-condensing attention condenser (DC-AC) self-attention mecha-
nism, an enhancement of the attention condenser mechanism first introduced in [6] for incorporating
efficient selective attention within a network architecture towards relevant stimuli. The architec-
tural design of a DC-AC self-attention mechanism is shown in Figure 1, and can be described as
follows. Fundamentally, DC-AC self-attention mechanisms are comprised of: 1) condenser layers, 2)
embedding layers, and 3) expansion layers.

More specifically, the condensation layers are responsible for condensing the input V such that
dimensionality is reduced in a manner that places greater emphasis on activations in close proximity to
strong activations. This condensation allows for significantly reduced architectural and computational
complexity while encouraging the characterization of strongly activated locations. The embedding
layers are responsible for learning condensed embeddings characterizing joint local and cross-
channel activation relationships. This enables a rich understanding and characterization of what is
important to focus on in the data while preserving lower architectural and computational complexity.
The expansion layers are responsible for projecting the condensed embeddings to the appropriate
dimensionality. The resulting self-attention values A and feature embeddings B are then leveraged to
perform selective attention V = F (A,B), which effectively leads to attenuation of irrelevant stimuli
and direct attention to relevant stimuli.

The key enhancement to the original attention condenser design is the introduction of an additional
condensation mechanism on the input features V (see top feature branch with output B), resulting in
greater symmetry in condensation on both the feature branch and the attention branch in the DC-AC
self-attention mechanism. This symmetrical condensation within the self-attention mechanism in
effect enables more condensed feature embeddings to be learned for improved balance between
network efficiency and representational performance. We further streamlined the attention condenser
design by removing the scaling conducted during selective attention F , which was found to have
limited effect in the new DC-AC design. The proposed DC-AC mechanism is leveraged during
machine-driven design exploration.
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Figure 1: Proposed AttendNeXt architecture. DC-AC modules are comprised of condenser layers
(orange), embedding layers (yellow) and expansion layers (blue).

2.2 Machine-driven design exploration

In this study, generative synthesis [11] is leveraged to perform machine-driven design exploration
to determine the macro-micro architecture design of AttendNeXt. Generative synthesis is an gen-
erative architectural exploration process that discovers highly tailored DNN architectures based on
operational requirements and constraints. The exploration process is formulated as a constrained
optimization problem

G = max
G

U(G(s)) subject to 1r(G(s)) = 1, ∀ ∈ S. (1)

where the goal is to find the optimal generator G⋆(·) which generates network architectures N that
maximizes a universal performance function U (e.g., [12]) under a given set of operational constraints
formulated via an indicator function 1r(·). The optimization process is performed iteratively via the
interplay between a generator G⋆(·), which is tasked with generating network architectures N and an
inquisitor I responsible for assessing the performance of the G via its generated architectures N .

We impose four key best practices design constraints via 1r(·) to identify macro- and micro- ar-
chitecture designs for AttendNeXt that exhibit the desired balance between accuracy, architectural
complexity, and computational complexity to produce a compact, low footprint, high performance
neural network tailored for edge scenarios. These four constraints include:

1. Encouraging columnar architecture designs with parallel columns to significantly reduce
architectural and computational complexity.

2. Restricting the use of point-wise strided convolutions to mitigate the considerable informa-
tion loss seen in many residual network designs [13, 14].

3. Encouraging the use of anti-aliased downsampling (AADS) [15] to improve network stability
and robustness.

4. Enforcing top-1 accuracy on ImageNet for a validation set to be above 75.8% to ensure
AttendNeXt performs at least as well as OFA-62, a compact architecture created via Once-
For-All (OFA) [3], a state-of-the-art neural architecture search method.
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Figure 2: Top-1 accuracy (ImageNet) for AttendNeXt and state-of-the-art efficient networks.

2.3 Network architecture

Figure 1 demonstrates the AttendNeXt architecture designed via machine-driven exploration. A
number of observations can be made from Figure 1. First, it possesses a heterogeneous columnar
design with different degrees of columnar interactions at different stages, thus striking a balance
between accuracy and efficiency by learning representative yet disentangled embeddings. Secondly,
by having more independent columns in the earlier stages and more columnar interactions at later
stages, independent feature learning is amplified for lower levels of abstraction while more complex
feature learning for higher levels of abstraction are catered for through the increased interactions
amongst the columns. Thirdly, the widespread presence of AADS throughout the network architecture
improves robustness and stability by making it more shift-invariant [15]. Finally, we observe that DC-
AC modules at different stages of the architectures increase efficiency of selective attention. Efficient
selective attention results in improved representational efficiency through the use of condensed
characterizations of joint spatial-channel activation relationships.

3 Results

The efficacy of the proposed AttendNeXt architecture is evaluated on ImageNet dataset and is
compared with the state-of-the-art efficient architectures (OFA-62 created via Once-For-All (OFA) [3],
FB-Net C [2], MobileViT XS [1], MobileOne-S1 [5], and MobileNetv3-L [4]) across three metrics:
1) Top-1 accuracy, 2) model size, and 3) relative inference throughput (with FB-Net C as baseline) on
an embedded, low-power ARM Cortex A72 processor often used for edge computing applications.

Figure 2 shows the proposed AttendNeXt architecture achieved 75.8% top-1 accuracy, outperforming
MobileViT-XS and FB-Net C by ∼1%. While AttendNeXt achieves slightly better top-1 accuracy than
MobileNetV3-L and OFA-62, it significantly outperforms both architectures in inference throughput
on ARM Cortex A72. Figure 3(a) shows that AttendNeXt is > 10× faster than FB-Net C and
MobileOne-S1, > 6× faster than OFA-62 and MobileNetv3-L, and ∼ 4× faster than MobileViT XS.
In terms of model size, Figure 3(b) shows that AttendNeXt is significantly smaller than OFA-62,
MobileNetv3-L, FB-Net C, and MobileOne-S1 (e.g., AttendNeXt is > 1.47× smaller than OFA-
62). While larger than MobileViT-XS, AttendNeXt is significantly faster on ARM Cortex A72 and
significantly higher top-1 accuracy.

These results demonstrate that AttendNeXt possesses a strong balance between accuracy, architectural
complexity, and computational complexity, making such an architecture well-suited for TinyML
applications on the edge. Furthermore, it illustrates that efficient selective attention can enable a
strong balance between network efficiency and representational power. These promising results also
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Figure 3: (a) Inference throughput on ARM Cortex A72. (b) Model size of AttendNeXt and tested
networks.

demonstrate that exploring different efficient architecture designs and self-attention mechanisms can
lead to interesting new building blocks for TinyML applications.

4 Broader Impact

The interest in TinyML (tiny machine learning) has grown significantly in recent years as one of the
key driving factors towards widespread adoption of machine learning in industry and society. TinyML
is crucial for enabling real-time decision-making and predictive analytics on low-cost, low-power
embedded devices, and holds tremendous potential that is currently being realized across industries
ranging from manufacturing to energy to automotive to aerospace to healthcare. The proliferation of
TinyML can have considerable important socioeconomic implications that needs to be considered
given its ability to enable machine learning across industries and applications. Furthermore, the
interest in attention mechanisms within deep learning has greatly increased in recent years, and
its proliferation also has important implications given its increasing adoption within real-world
applications. The hope with explorations such as this study that introduces new building blocks such
as double-condensing attention condensers is that it would provide new insights in advancing efforts
in TinyML for greater adoption of machine learning towards ubiquity, as well as shed new insights
into selective attention within a neural network context.
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